
NASA Technical Memorandum 102553

PROTEUS Two-Dimensional Navier-Stokes

Computer Code--Version 1.0
Volume 3--Programmer's Reference

Charles E. Towne, John R. Schwab, and Thomas J. Benson

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio

Ambady Suresh

Sverdrup Technology, Inc.

NASA Lewis Research Center Group

Cleveland, Ohio

March 1990

;_e,L_-2 l .tO 1

r,-_, / __<'>

PROTEUS Two-Dimensional
Navier-Stokes Computer Code

Version 1.0

Volume 3 - Programmer's Reference

NASA Lewis Research Center
Internal Fluid Mechanics Division

Computational Methods Branch
September, 1989

CONTENTS

St 3131ARY . .. 3

!.0 IN'IR()I)ICTION .. 5

2.0 PR()GRAM S'IRIXTI1RE ... 7
2.1 FIOW CIIART 7
2.2 SI/BI'ROGRAM CAIJ_,ING TREE .. 10
2.3 I'I_OGRAMMING CONVENTIONS AND NOTES 13

2.3.1 Computer & l,anguage .. 13
2.3.2 Fortran Variables .. 14

3.0 COMMON BIX)CKS ..
3.1
32
3.3
3.4

17

COMMON BLOCK SUMMARY ... 17
C()MMON V.,\RIAI_I,t_S IASTEI) AI,PIIABETICAIA_Y 17
C()MMON VARIABI F£ IJS'IEI) SYMBOIACALIX 33
C()\IM()N VARIABLES LISTFD BY COMMON B1,OCK 42
Common Block BCI .. 42

Common Block
Common Block
Common t31ock
Common Block
Common 13lock
Common Block
Common Block
('ommon Block
Common Block
Common P,lock
(Sommon l:/lock

I) [i M M Y 1 .. 44
FI ()WI ... 45
GMTRY1 ... 48
IC 1 .. 48
IO 1 .. 49
MI!IRIC1 ... 50
Ni_MI ... 51
RSTRTI .. 54
TIMEI ... 54
TITI,I_ 1 ... 56
TUI_,I_ 1 ... 56

4.0 PROTI._UN SI;I_I'ROGRAMS .. 59
4.1 SUI3tq_,OGRAM SUMMARY .. 59
4.2 S[7I_PRO(}RAM i)i.;TAILS .. 61

Subroutine AI)I ... 62
,Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine

Subroutine
Subrominc
Subroutine
Subroutine
Subroutine

AVISC 1 .. 63
AVISC2 .. 66
BCDI'_NS ... 69
BCIiI,IM ... 72
BCF ... 73
BCFI,IN .. 78
BCGEN .. 80
B('GRAD ... 82
BCMITI" 83
BCI,RI,S .. 84

BCQ ... 91
BCSt-7I" . .. 95

B(-Tt.;Mt _ ... 97
BC[Vlil ... 103
I_CVI)IR .. 107
BCVVI!I ... 116
B(;WVII ... 120
BI,IN1 .. 124

PROTEUS 2-D Programmer's Reference Contents I

SubroutineBLIN2 .. 126
BLOCKDATA .. 127
SubroutineBLKOUT .. 129
SubroutineBLK3 ... 130
SubroutineBLK3P .. 132
SubroutineBLK4 ... 134
SubroutineBLK4P .. 135
SubroutineBLK5 ... 136
SubroutineBLK5P .. 137
SubroutineBI,OUT1 .. 138
SubroutineBLOUT2 .. 140
SubroutineBVUP ... 141
SubroutineCOEFC ... 143
SubroutineCOEFE.. 147
SubroutineCOEFX ... 155
SubroutineCOEFY ... 162
SubroutineCOEFZ .. 170
SubroutineCONV .. 175
SubroutineCUBIC .. 177
SubroutineEQSTAT 179
SubroutineEXEC ... 181
SubroutineFILTER ... 186
SubroutineFTEMP ... 188
SubroutineGEOM .. 191
SubroutineINrr .. 194
SubroutineIN1TC .. 195
SubroutineINPUT .. 200
FunctionISAMAX .. 202
FunctionISAMIN .. 204
MAIN Program .. 205
SubroutineMETS ... 208
SubroutineOUTPUT .. 210
Subroutine PAK .. 212
Subroutine PERIOD ... 214
Subroutine PLOT ... 216
Subroutine PRTttST .. 219
Subroutine PRTOUT .. 220
Subroutine RES1D .. 221
Subroutine REST ... 224
Subroutine ROBTS .. 226
Function SASUM ... 228

Subroutine SGEFA 229
Subroutine SGESL .. 230
Function SNRM2 ... 231
Subroutine TBC .. 233
Subroutine TIMSTP ... 235
Subroutine TURBBL .. 238
Subroutine UPDATE .. 241
Subroutine VORTEX .. 243

REFERENCES ... 245

2 Contents PROTEUS 2-D Programmer's Reference

PROTEUS13VO-DI.MENSIONAL
NAVIER-STOKES COMPUTER CODE - VERSION !.0

Volume 3 - Programmer's Reference

Charles E. Towne, John R. Schwab, Thomas J. Benson

National Aeronautics and Space Administration
I,ewis Research Center

Cleveland, Ohio

_Mnbady Suresh

Sverdmp Technology, Inc.
NASA Lewis Research Center Group

Clevcland, Ohio

SUMMARY

A new computer code, called PROTEUS, has been developed to solve the two-dimensional planar or
a:dsymmetric, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conser_'ation
law form. The objective in this effort has been to develop a code for aerospace propulsion applications that
is easy to use and easy to modify. Code readability, modularity, and documentation have been emphasized.

The governing equations are written in Cartesian coordinates and transformed into generalized
nonorthogonal body-fitted coordinatcs. They are solved by marching in time using a fully-coupled
alternating-direction-implicit solution procedure with generalized first- or second-order time differencing.
The boundary" conditions are also treated implicitly, and may be steady or unsteady. Spatially periodic
boundary, conditions are also available. All terms, including the diffusion terms, are linearized using
second-order Taylor series expansions. Turbulence is modeled using an algebraic eddy viscosity model.

The program contains many operating options. The governing equations may be solved for two-
dimensional planar flow, or a_symmetric flow with or without swirl. The thin-layer or Euler equations
may be solved as subsets of the Navier-Stokes equations. The energy' equation may be eliminated by the
assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used to damp pre-
and post-shock oscillations in supersonic flow and to minimize odd-even decoupling caused by central
spatial differencing of the convective terms in high Reynolds number flow. Several time step options are
available for convergence acceleration, including a locally variable time step and global time step cycling.
Simple Cartesian or polar grids may be generated internally by the program. More complex geometries
require an externally generated computational coordinate system.

The documentation is divided into three volumes. Volume 1 is the Analysis Description, and presents
the equations and solution procedure used in PROTEUS. It describes in detail the governing equations,
the turbulence model, the linearization of the equations and boundary conditions, the time and space dif-
ferencing formulas, the ADI solution procedure, and the artificial viscosity models. Volume 2 is the User's
Guide, and contains information needed to run the program. It describes the program's general features,
the input and output, the procedure for setting up initial conditions, the computer resource requirements,
the diagnostic messages that may be generated, the job control language used to run the program, and se-
veral lest cases. Volume 3, the current volume, is the Programmer's Reference, and contains detailed in-
formation useful when modifying the program. It describes the program structure, the Fortran variables
stored in common blocks, and the details of each subprogram.

PROTEUS 2-D Programmer's Reference Summary 3

1.0INTRODUCTION

Much of the effort in applied computational fluid dynamics consists of modifying an existing program
for whatever geometries and flow regimes are of current interest to the researcher. Unfortunately, nearly
all of the available nonproprietary programs were started as research projects with the emphasis on dem-
onstrating the numerical algorithm rather than ease of use or ease of modification. The developers usually
intend to clean up and formally document the program, but the immediate need to extend it to new ge-
ometries and flow regimes takes precedence.

The result is often a haphazard collection of poorly written code without any consistent structure. An
extensively modified program may not even perform as expected under certain combinations of operating
options. Each new user must invest considerable time and effort in attempting to understand the underlying
structure of the program if intending do anything more than run standard test cases with it. The user's
subsequent modifications further obscure the program structure and therefore make it even more difficult
for others to understand.

The PROTEUS two-dimensional Navier-Stokes computer program is a user-oriented and easily-
modifiable flow anMysis program for aerospace propulsion applications. Readability, modularity, and
documentation were primary objectives during its development. The entire program was specified, de-
signed, and implemented in a controlled, systematic manner. Strict progr_unming standards were enforced
by immediate peer review of code modules; Kemighan and Plauger (1978) provided many useful ideas about
consistent programming style. Every subroutine contains an extensive comment section describing the
purpose, input variables, output variables, and calling sequence of the subroutine. With just two clearly-
defined exceptions, the entire program is written in ANSI standard Fortran 77 to enhance portability. A
master version of the program is maintained and periodically updated with corrections, as well as extensions
of general interest (e.g., turbulence models.)

The PROTEUS program solves the unsteady, compressible, Reynolds-averaged Navier-Stokes
equations in strong conservation law form. The governing equations are written in Cartesian coordinates
and transformed into generalized nonorthogonal body-fitted coordinates. They are solved by marching in
time using a fully-coupled alternating-direction-implicit (ADI) scheme with generalized time and space dif-
ferencing (Briley and McDonald, 1977; Beam and Warming, 1978). The current turbulence model is based
upon the algebraic eddy-viscosity model of Baldwin and Ix)max (1978). All terms, including the diffusion
terms, are linearized using second-order Taylor series expansions. The boundary conditions are treated
implicitly, and may be steady or unsteady. Spatially periodic boundary conditions are also available.

The program contains many operating options. The governing equations may be solved for two-
dimensional planar flow, or axisymmetric flow with or without swirl. The thin-layer or Euler equations
may be solved as subsets of the Navier-Stokes equations. The energy equation may be eliminated by the
assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used to damp pre-
and post-shock oscillations in supersonic flow and to minimize odd-even decoupling caused by central
spatial differencing of the convective terms in high Reynolds number flow. Several time step options are
available for convergence acceleration, including a locally variable time step and global time step cycling.
Simple grids may be generated internally by the program; more complex geometries require external grid
generation, such as that developed by Chen and Schwab (1988).

The documentation is divided into three volumes. Volume 1 is the Analysis Description, and presents
the equations and solution procedure used in PROTEUS. It describes in detail the governing equations,
the turbulence model, the linearization of the equations and boundary conditions, the time and space dif-
ferencing formulas, the ADI solution procedure, and the artificial viscosity" models. Volume 2 is the User's
Guide, and contains information needed to run the program. It describes the program's general features,
the input and output, the procedure for setting up initial conditions, the computer resource requirements,

the diagnostic messages that may be generated, the job control language used to run the program, and se-

PROTEUS 2-D Programmer's Reference

PRECEDING PAGE BLANK NOT FILMED

Introduction 5

veral test cases. Volume 3, the current volume, is the Programmer's Reference, and contains detailed in-
formation useful when modifying the program. It describes the program structure, the Fortran variables
stored in common blocks, and the details of each subprogram.

The authors would like to acknowledge the significant contributions made by three co-workers in the
development of the PROTEUS program. Simon Chen did the original coding of the Baldwin-Lomax tur-
bulence model, and consulted in the implementation of the nonlinear coefficient artificial viscosity model.
William Kunik developed the original coding for computing the metrics of the generalized nonorthogonal
grid transformation. Frank Molls made many debugging and verification runs, particularly for spatially
periodic and unsteady flows.

6 Introduction PROTEUS 2-D Programmer's Reference

2.0 PROGRAM STRUCTURE

2.1 FLOWCHART

In this section, a flow chart is presented showing the overall sequence of tasks performed by the two-
dimensional PROTEUS computer code. Depending on the various options used in a particular run, of
course, some of the elements in the chart may be skipped.

[READ & PRINT INPUT I

RESTART FILES YES _T_

IGET METRICS] I GET INITIAL FLOWFIELD [

so _ CEToam,-_,cs I

>]1 SET POINT-BY-POINTBOUNDARY CONDITIONS

INITIALIZE PLOT FILES & I
PRINT INITIALFLO_P_IELD I

[COMPUTE TIY_. STEP SIZE

IF _IIE-DEPENDNNT

Figure 2.1 - Flow chart for the 2-D PROTEUS computer code.

PROTEUS 2-D Programmer's Reference Program Structure 7

IN SPATIALLY PERIODIC DIRECTIONS

I

{SETuP_ORFroSTS_EP {

{ADD BOUNDARY CONDITIONS]

ARTIFICIAL VISCOSITY TERMS

{ADD ARTIF[CIAL VISCOSITY[

ARTIFICIAL VISCOSITY TERMS

IPE_ORMMATRIXINVZRSION{
[

--_ SET UP FOR SECOND SWEEP {

,i

{ADD BOUNDARY CONDITIONS{

[ADD ARTIFICIAL VISCOSITY{

[PERFORM MATRIX INVERSION {

Figure 2.1 - Continued,

8 Program Structure PROTEUS 2-D Programmer's Reference

UPDATE BOUNDARY VALUES I
FROM FIRST SWEEP I

[UPDATE AUX]I/A_RY VARIABLES I

[UPDATE TURBULENCE PARAMETERS I

{G_NE_EO_TPU'rr

{GENERATE OUTPUT{

NO

,)

Figure 2.1 - Concluded.

PROTEUS 2-D Programmer's Reference Program Structure 9

2.2 SUBPROGRAM CALLING TREE

In this section, the calling sequence for the various subprograms in the PROTEUS 2-D code is shown

using a tree structure. The subheadings correspond to the elements of the flow chart shown in the previous
section. The main program, listed in the first column, calls the subprograms in the second column, which

in turn call those in the third column, etc. For any given case, of course, some of these routines will not

be used. ltae subprograms needed for a particular case will depend on the combination of input parameters
being used. The individual subprograms are described in detail in Section 4.0.

INITIALIZATION

Read and print input.

MAIN IN PUT ISAMAX]

Get grid and metric parameters.

MAIN GEOM PAK ROBTS
CUBIC

METS OUTPUT PRTOUT

Get initial flow field.

MAIN INITC METSREST
INIT
FTEMP

EQSTAT
TURBBL VORTEX

BLOUT 1

BLIN1
BLOUT2

BLIN2

Set point-by-point boundary condition values.

MAIN BCSET

Initi',dize plot files and print initial or restart flow field.

MAIN PlOT
OUTPUT I_RTOUT

SET UP FOR TIME STEP

Compute time step size.

MAIN TIMSTP ISAMAX

Reset boundary conditions if time-dependent.

MAIN TBC BCSET

ISAMAX
ISAMIN

ISAMAX
ISAMIN

10 Program Structure PROTEUS 2-1) Programmer's Reference

FILL BLOCKCOEFFICIENTMATRIX

Add extra data line at N + 1 if spatially periodic in sweep direction.

MAIN EXEC PERIOD

Compute coefficients of governing equations.

MAIN EXEC EQSTAT
COEFC
COEFX
COEFY
COEFE
COEFZ

Add boundary conditions.

MAIN EXEC EQSTAT
BCGEN

BCELIM

BCQ

BCUVEL

BCWEL

BCWVEL

BCPRES

BCTEMP

BCDENS

BCVDIR

BCF

BLKOUT
SGEFA
SGESL

BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCMET
BCGRAD
BCFL1N
BCMET
BCGRAD

Compute residuals without artificial viscosity terms (sweep 1 only.)

MAIN EXEC RESID 'SNRM2

ISAMAX
SASUM

Add artificial viscosity.

MAIN EXEC AVISC 1 BLKOUT
AVISC2 BLKOUT

Compute residuals with artificial viscosity terms (sweep 1 only.)

MAIN ExEc RESID SNRM2

ISAMAX
SASUM

PROTEUS 2-D Programmer's Reference Program Structure ! 1

SOI.VEDIFFERENCE EQUATIONS

Perform matrix inversion.

MAIN EXEC ADI

UPDATE

Update boundao" values from first sweep.

.MA! }< I{XEC BVUP

BLKOUT
BLK3P
B1,K3

BIK4P
BLK4

BLK5P
BI,K5

FIL'I ER

FII,TFR

FII,TER

ISAMAX
BI.KO[7I"

ISAMAX
BI K()I.TT

ISAMAX
BI.KOUT

EQSTAT
BCGEN

SGEFA
SGESL

_co

BCIJVEI.

IICVVFA_

BCWVEL

BCPRF, S

BCTEMP

BCI)ENS

BCVI)IR

BCF

BLKOUT

BCMIiT
BCGRAD
B C M ET
BCGRAI)
BCMET
BCGRAI)
BCMFSI'
BCGRAI)
BCMET
BC(iRAD
BCMFSI"
BCGRAD
BCMF.T
BCGRAD
BCMET
BCGRAI)
BCFI .IN
BCMET
BCGRAI)

12 Program Structure PROTEUS 2-D Programmer's Reference

FINISHTIME STEP AND CHECK RESULTS

Update auxiliary variables.

MAIN I EQSTAT

Update turbulence parameters.

MAIN TURBBL VORTEX
BLOUT 1

BLINI
BLOUT2

ISAMAX
ISAMIN

ISAMAX
ISAMIN

BLIN2

Check for convergence.

MAIN I CONV [ISAMAX 1 [[

GENERATE OUTPUT

Print flow field output.

MAIN [OUTPUT] PRTOUT 1

Write plot and restart flies.

MAIN I PLOTREST [

Print convergence history.

1 I 1

2.3.1 Computer& Language

At NASA Dewis Research Center, PROTEUS is normally run on a Cray X-MP computer. With just
two known exceptions, it is written entirely in ANSI standard Fortran 77 as described in the CFT77 Ref-
erence Manual (Cray Research, Inc., 1988a). The first exception is the use ofnamelist input. With namelist

input, it's relatively easy to create and/or modify input files, to read the resulting fries, and to program de-
fault values. Since most Fortran compilers allow namelist input, its use is not considered a serious problem.
The second exception is the use of *CALL statements to include *COMDECKS, which contain the labeled
common blocks, in most of the subprograms. This is a Cray UPDATE feature, and therefore the source

code must be processed by UPDATE to create a file that can be compiled. _ UPDATE is described in the
UPDATE Reference Manual (Cray Research, Inc., 1988c). Since using the *CALL statements results in

cleaner, more readable code, and since many computer systems have an analogous feature, the *CALL

statements were left in the program.

Six library subroutines are called by PROTEUS. ISAMAX, SASUM, and SNRM2 are Cray Basic

Linear Algebra Subprograms (BLAS). ISAMIN is a Cray extension to the BLAS routines. SGEFA and

SGESL are Cray versions of LINPACK routines. All of these routines are described in detail in Section

4.0, and in the Programmer's Library Reference Manual (Cray Research, Inc., 1988b).

See the example in Section 8.1 of Volume 2.

PROTEUS 2-D Programmer's Reference Program Structure 13

The PROTEUS code is hi_hly vectorized for optimal performance on the Cray. The coefficient gener-
ation is vectorized in the ADI sweep dtrection. Since the coefficient matrix is block tridiagonal, the
equations are solved using the Thomas algorithm. This algorithm is recursive, and therefore cannot be
vectorized in the sweep direction, ltowever, by storing the coefficients and source terms in both coordinate
directions, the algorithm can be vectorized in the non-sweep direction. This increases the storage required
by the program, but greatly decreases the CPU time required for the ADI solution.

2.3.2 Fortran Variables

Variable Names

In developing PROTEUS, code readability has becn emphasized. We have therefore attempted to
choose Fortran variable names that are meaningful. In general, they either match the notation used in the
analysis description in Volume 1, or are in some way descriptive of the parameter being represented. For
example, RtlO, U, V, W, and ET are the Fortran variables representing the density p, the velocities u, v,
and w, and the total energy per unit volume Er.

REAL and INTEGER Variables

In general, the type (REAL or INTEGER) of the Fortran variables follows standard Fortran convention
(i.e., those starling with I, J, K, L, M, or N are INTEGER, and the remainder are REAL.) There are,
however, several variables that would normally be INTEGER but are explicitly declared to be REAL.
These are noted in the input description in Section 3.0 of Volume 2, and in the description of common
block variables in Section 3.0 of this volume.

Array Dimensions

Most Fortran arrays are dimensioned using PARAMETERs. The PARAMETERs are set in
COMDECK PARAMS1. This allows the code to be redimensioned simply be changing the appropriate
PARAMETERs, and then recompiling the entire program. The PARAMETERs are described in Section
6.2 of Volume 2.

Initialization

All of the input Fortran variables, plus some additional variables, are initialized in BLOCK DATA.
Most of the input variables are initialized to their default values directly, but some are initialized to values
that trigger the setting of default values in subroutine INPUT. On the Cray X-MP at NASA Lewis, all
unirfitialized variables have the value zero. There axe no known instances in the PROTEUS code, however,
in which a variable is used before it is assigned a value.

Nondlmensionalization

In general, l:onran variables representing physical quantities, such as RIIO, U, etc., are nondimensional.
Two types of nondimensionalizing factors are used - reference conditions and normalizing conditions. The
factors used to nondimensionalize the governing equations in Section 2.0 of Volume 1 are called normalizing
conditions. These normalizing conditions are defined by six basic reference conditions, for length, velocity,
temperature, density, viscosity, and thermal conductivity, which are speci,qed by the user. The normalizing
conditions used in PROTEUS are listed in Table 3-1 of Volume 2.

Note that for some variables, like pressure, the normalizing condition is dictated by the form of the
governing equations once the six basic reference conditions are chosen. Unfortunately, some of these may
not be physically meaningful or convenient for use in setting up input conditions, Therefore, some addi-
tional reference conditions are defined from the six user-supplied ones. The reference conditions are listed
in Table 3-2 of Volume 2.

Throughout most of the PROTEUS code, physical variables are nondimensionalized by the normalizing
conditions. For input and output, however, variables are nondimensionalized by the reference conditions
because they are usually more physically meaningful for the user. The Fortran variables representing the
reference conditions themseNes are, of course, dimensional.

14 Program Structure PROTEUS 2-D Programmer's Reference

One-Dimensional Addressing of Two-Dimensional Arrays

In the solution algorithm used in PROTEUS, there are several instances in which the same steps must
be followed in both AI)I sweep directions. An example is the computation, in the COEFC, COEFX,
COEFY, COEFZ, and COEFE routines, of the submatrices in the block tridiagonal coefficient matrix.
These computations involve two-dimensional arrays such as RttO, U, etc. In these arrays, the two sub-
scripts represent, in order, the indices in the computational { and r/ directions. For the first ADI sweep,
wdues at various { indices are needed at a fixed ,_ index. [:or the second ADI sweep, the reverse is true.
In order to use the same coding for both sweeps, a scheme for one-dimensional addressing of a two-
dimensional array has been t, sed/

In Fortran, multi-dimensional arrays are actually stored in memory' as a one-dimensional sequence of
values, with the first subscript incremented over its range first, then the second subscript, etc. We take ad-
vantage of this in PROTEUS. As a first step, the two-dimensional array is EQUIVAI.ENCE'd to a one-
dimensional array of the same total length. The one-dimensional array name is derived from the
two-dimensional array name by adding a "1". Thus, letting F represent a typical two-dimensional array,

DIMENSION F(NIP,N2P),FI(NTOTP)
EQUIVALENCE (F(I,I),FI(1))

where NII' and N2P are PARAMETERs specifying the dimension size in the _ and n directions, mad
NTOTt' is a PARAMETER equal to NIP x N2P. Next, we define a "step factor", which depends on the
AI)I sweep, and a "base index" which depends on the index in the non-sweep direction. For the first ADI

sweep,

ISTEP = I
DO lOOO I2 = 2,NPT2-1
IV = 12
IBASE = 1 + (12-1)_NIP

I000 CONTINUE

And for the second ADI sweep,

ISTEP : NIP
DO 2000 II : 2,NPTI-I
IV : II
IBASE : Ii

2000 CONTINUE

In both of the above examples, the loop is in the non-sweep direction and IV therefore represents the index
in the non-sweep direction. Nested inside this loop is a loop in the sweep direction. In this inner loop,
we can compute the equivalent one-dimensional address for a location in a two-dimensional array from the
step factor, the base index, and the index in the sweep direction. Thus, for either ADI sweep, the inner loop
looks like

DO I00 I : 2,NPTS-I
IIMI : IBASE + ISTEPI(I-2)
II : IBASE + ISTEPW(I-1)
IIPI : IBASE + ISTEPwI

An alternative would be to switch the order of the two subscripts in all the arrays aRer each sweep. Since these
arrays are used in many other areas of the code, this idea was discarded as being unnecessarily confusing. It should
be noted, however, that the first two subscripts in the A, B, C, and S arrays, which represent the coefficient sub-
matrices and source term subvector, do switch between sweeps. For these arrays, the first subscript is the index in
the non-sweep direction (i.e., the r1 direction for the first sweep and the ¢ direction for the second sweep), and the
second is the index in the sweep direction (i.e., _ for the first sweep and r/for the second sweep.)

PROTEUS 2-D Programmer's Reference Program Structure 15

I00 CONTINUE

wherelrepresentsthe index in thesweep dkection. Withthiscoding, _rthef_stsweep

FI(IIMI) : F(II-I,12)
FI(II) = F(I1 ,I2)
FI(IIP1) = F(II+l,I2)

And for the second sweep,

FI(IIMI) = F(II,I2-1)
FI(II) = F(II,I2)
FI(IIP1) = F(II,I2+l)

Two-l.evel Storage

With the Beam-Warming time differencing scheme used in PROTEUS, the dependent variables RHO,
U, V, W, and ET must be stored at two time levels. For convenience, T is also stored at two time levels.
In the ADI solution procedure, RHO, U, etc. are at the known time level n. The corresponding variable
at the other time level is denoted by adding an "L" to the variable name. Exactly which time level the "L"
variable is at depends on the stage in the solution procedure. Letting F represent one of these variables, the
time levels for F and FL are listed in the following table for the different stages of the solution procedure.
Recall that * represents the intermediate time level after the first ADI sweep.

STAGE IN TIME STEP
FROM LEVEL n TO n + 1

From start to end of sweep 1

From end of sweep 1 to end of sweep 2

From end of sweep 2 to update in EXEC

From update in EXEC to start of next step

TIME LEVEL
FOR F

t_

1"/

?/

n+l

TIME LEVEL
FOR FL

n-I

n+l

n

D UMM Y A rra?

For convenience, a two-dimensional array called DUMMY is stored in common block DUMMYI and
used as a temporary storage location in several areas of the code. This array is DIMENSION'ed N1P by
N2P, the same as the flow variables, metrics, etc. DUMMY is used intemaUy in subroutines CONV and
RESID. It is also defined in subroutine BCFLIN for use in subroutine BCF, and in subroutines BLIN2
and BLOUT2 for use in TURBBL. And finally, it is defined in subroutine OUTPUT and passed as an
argument into subroutine PRTOUT. Details on its use are presented in the subroutine descriptions in
Section 4.0.

16 Program Structure PROTEUS 2-D Programmer's Reference

3.0 COMMONBLOCKS

Transfer of data between routines in PROTEUS is primarily accomplished through the use of labeled
common blocks. Each common block contains variables dealing with a particular aspect of the analysis,
and is stored in a separate Cray COMDECK (Cray Research, Inc., 1988c). The common block names are
the same as the COMDECK names. These names also correspond to the names of the input namelists.
All the variables in namelist BC are stored in common block BC 1, etc.
common block are stored in alphabetical order.

3.1 COMMON BLOCK SUMMARY

Block Name Description

BC 1

DUMMYI

FLOW1

GMTRY 1

IC1

I01

METR IC 1

NUMI

RSTRT1

TIME 1

T ITLE 1

TURB1

The Fortran variables in each

Boundary condition parameters.

Scratch array.

Variables dealing with fluid properties and the flow being com-
puted.

Parameters dcfming the gcomctric configuration.

Variables needed for setting up initial conditions.

Parameters dealing with program input/output requirements.

Metrics of the nonorthogonal grid transformation, plus the
Cartesian coordinates of the grid points.

Parameters associatcd with the numerical method.

Parameters dealing with the restart option.

Parametcrs dealing with the time step selection and convergence
detcrmination.

Descriptive title for case being run.

Turbulence parameters.

3.2 COMMON VARIABLES LISTED ALPHABETICALLY

In this section "all the PROTEUS Fortran variables stored in common blocks are defined, listed alpha-
betically by variable name. Those marked with an asterisk are input variables. More details on these var-
iables may be found in Section 3.1 of Volume 2. The common block each variable is stored in is given in
parentheses at the end of each definition. For subscripted variables, the subscripts are defined along with
the variable, except for the subscripts I1 and I2, which are the indices i andj in the _ and r/directions, re-
spectively, and run from 1 to N, and N 2.

This list also includes the Cray PARAMETERs used as array dimensions. These are not actually stored
in a common block, but are stored in the Cray COMDECK PARAMSI. More details may be found in
Section 6.2 of Volume 2.

Unless otherwise noted, all variables representing physical quantities are nondimensional. The
nondimensionalizing procedure is described in Section 3.1.1 of Volume 2. The type (real or integer) of the
variables follows standard Fortran convention, unless stated otherwise. (I.e., those starling with I, J, K,
L, M, or N are integer, and the remainder are real.)

PROTEUS 2-D Programmer's Reference Common Block Summary 17

Fortran
Variable

A(IV,I,J,K)

Symbol

A

ALPHA

* ALPHA1 _

* ALPtlA2 %

* APLUS A +

B(IV,I,J,K) 13

C(IV,I,J,K) C

* CAVS2E(I) e_) or _:2

* CAVS21(I) _I

* CAVS4E(I) _ or _c4

I)efmition

Subdiagonal submatrix of coefficients at grid point 1 in the
block tridiagonal coefficient matrix. I is the grid index in the
sweep direction, running from 1 to N. IV is the grid index in
the "vectorized" direction (i.e., the non-sweep direction in
which the "BLK" routines are vectorized), and runs from 2 to

N,- 1. The subscript J = 1 to N_q, corresponding to the ,V,q

coupled governing equations, and K = 1 to N,q, corresponding
to the ,_\,q dependent variables. (NUM1)

Difference centering parameter for first derivatives in the ADI
sweep direction. (NUMI)

Difference centering parameter for _ direction ftrst derivatives.
ALPtlA1 = 0.0, 0.5, or 1.0 corresponding to forward, central,
and backward differences, respectively. (NUMI)

Difference centering parameter for _ direction first derivatives.
ALPHA2 = 0.0, 0.5, or 1.0 corresponding to forward, central,
and backward differences, respectively. (NUM1)

Van Driest damping constant in the inner and outer regions
of the Baldwin-Lomax turbulence model. (TURB 1)

Diagonal submatrix of coefficients at grid point I m the block
tridiagonal coefficient matrix. I is the grid index in the sweep
direction, running from 1 to N. IV is the grid index in the
"vectorized" direction (i.e., the non-sweep direction in which
the "BLK" routines are vectorized), and runs from 2 to

N,- 1. The subscript J = 1 to N,q, corresponding to the N,q
coupled governing equations, and K = 1 to N,q, corresponding
to the N,q dependent variables. (NUMI)

Superdiagonal submatrix of coefficients at grid point I in the
block tridiagonal coefficient matrix. I is the grid index in the
sweep direction, running from 1 to N. IV is the grid index in
the "vectorized" direction (i.e., the non-sweep direction in
which the "BLK" routines are vectorized), and runs from 2 to

,\"_- 1. The subscript J = 1 to N,q, corresponding to the N,q
coupled govcming equations, and K = 1 to N,q, corresponding
to the N,q dependent variables. (NUM1)

Second-order explicit artificial viscosity coefficient in constant
coefficient model, or user-specified constant in nonlinear co-

efficient model. The subscript I = 1 to N,q, corresponding to
the N,_ coupled governing equations. (NUM 1)

Second-order implicit artificial viscosity coefficient in constant
coefficient model. The subscript I = 1 to N,q, corresponding

to the :V,_coupled governing equations. (NUM 1)

Fourth-order explicit artificial viscosity coefficient in constant
coefficient model, or user-specified constant in nonlinear co-

efficient model. The subscript I = 1 to N,q, corresponding to

the A',, coupled governing equations. (NUMI)

18 Variables Listed Alphabetically PROTEUS 2-D Programmer's Manual

* CB B

* CCLAU K

* CCP Gp

CCP1-4 Gp,- Gp,

* CFL(I)

* CFLMAX

* CFLMIN

OIGAVG(I) z_Qo_g

CIIGMAX(I,J) AQ_o_

* CItGI

* CItG2

* CKLEB CKI,_

CK 1-2 Ckl " G2

CMUI-2 C_l" C.2

* CNA n

Constant used in the formula for the Klebanoff intermittency

factor Fm,_ in the outer region of the Baldwin-Lomax turbu-
lence model, and in the inner region of the Spalding-
Kleinstein turbulence model. (TURB1)

Clauser constant used in the outer region of the Baldwin-
Lomax turbulence model. (TURB1)

Constant used in the outer region of the Baldwin-Lomax tur-
bulence model. (TURB1)

Constants in empirical formula for specific heat as a function
of temperature. (FLOW1)

The ratio Ar/A%,t where Ar is the actual time step used in the
implicit calculation and Azcn is the allowable time step based
on the Courant-Friedrichs-Lewy (CFL) criterion for explicit
methods. I is the time step sequence number, and runs from
1 to N'I'SEQ. (TIMEI)

Maximum allowed value of the CFL number. (TIMEI)

Minimum allowed value of the CFL number. (TIME1)

Maximum change in absolute value of the dependent vari-
ables, averaged over the last NITAVG time steps? The sub-
script I = 1 to N,_, corresponding to the N,q dependent
variables. (TIME 1)

Maximum change in absolute value of the dependent variables
over a single time step) The subscript I = 1 to N,, corre-
sponding to the Neq dependent variables, and _= 1 to
NITAVG, the number of time steps used in the moving av-
erage option for determining convergence. (TIME1)

Minimum change, in absolute value, that is allowed in any
dependent variable before increasing the time step) (TIME1)

Maximum change, in absolute value, that is allowed in any
dependent variable before decreasing the time step? (TIME1)

Constant used in the formula for the Klebanoff interrnittency
factor/vr_, b in the outer region of the Baldwin-Lomax turbu-
lence model. (TURBI)

Constants in empirical formula for thermal conductivity coef-
ficient as a function of temperature. (FLOWI)

Constants in empirical formula for laminar viscosity coeffi-
cient as a function of temperature. (FLOW1)

Exponent in the formula used to average the two outer region
#, profiles that result when both boundaries in a coordinate
direction are solid surfaces. (TURBI)

3 For the energy equation, the change in E r is divided by Err = p_RTfl(_, - 1) + U2r[2,SO that it is the same order
of magnitude as the other conservation variables.

PROTEUS 2-D Programmer's Manual Variables Listed Alphabetically 19

* CN'I_ n

CV(II,12) c,

CVK

* ('WK (7._

I)1:I. A_ or A_I

I)I{'I'A ?ul

I)t'1)171"(!) @/8E7

I)I'I)R 1 I()(I) @/+)p

I)I'I)RU(I) @tO(,,u)

I)1' I)R V(I) 80/8(,, r)

I)Pl)RW(I) OpfS(p,v)

• 1)1(1) At

IYIA U(I 1,12) Ar

I)'1I)t'71(I) OT/c?E r

I) II)Rt [O(I) OT18 p

D IDR U(I) 8T/d(pu)

Exponent in the Launder-Priddin modified mixing len_h
formula for the inner region of the Baldwin- Lomax turbulence
model. (I'URB 1)

Specific heat at constant pressure at time level n. (I:LOW1)

Specific heat at constant volume at time level n. (FI.OWI)

Von Karman mixing length constant used in the inner region
of the Baldwin-lomax and SpMding-Kleinstein turbulence
models. (TI;I_.FI 1)

Constant used in the formula for t"_, in the outer re,on of
the Ikddwin-Iomax turbulence model. (TITP, B 1)

('omputational grid spacing in the AI)I sweep direction.
(N UM 1)

Computational grid spacing in the _ direction. (NI;MI)

The derivative of p
dimensional array in
therefore runs from 1

with respect to Er, stored as a one-
the sweep direction. The subscript I
to N. (FLOWI)

The derivative of p
dimensional array in
therefore runs fronl 1

with respect to p, stored as a one-
the sweep dircction. The subscript I
to N. (I:I,OWI)

The derivative of p
dimensional array in
therefore runs tiom 1

with respect to pu, stored as a one-
the sweep direction. The subscript I
to N. (El.OWl)

The derivative of p
dimensional array in
therelbre runs from 1

with respect to fir, stored as a one-
the swecp direction. The subscript I
to N. (FLOW1)

The derivative of p
dimensioned array, in
thcrefore runs from 1

with respcct to pw, stored as a one-
the sweep direction. The subscript I
toN. (|;I,OWI)

The time step size, when specified directly as input. I is the
time step sequence number, and runs from 1 to NTSEQ.
(TIME 1)

Computational time step size. (TIMtil)

The derivative of T

dimensional array in
therefore runs from 1

with respect to E r, stored as a one-
the sweep direction. The subscript I
to N. (FLOWI)

The derivative of T

dimensional array in
therefore runs from 1

with respect to p, stored as a one-

the sweep direction. The subscript I
to N. (FLOW1)

The derivative of T

dimensional array in
therefore runs from 1

with respect to pu, stored as a one-
the sweep direction, The subscript I
to N. (FLOW1)

20 Variables Listed Alphabetically PROTEUS 2-D Programmer's Manual

DTDRV(I) OTIO(pv)

DTDRW(I) aT/O(pw)

* DTF 1

* DTF2

* DTMAX

* I)T M IN

DUMMY(I 1,12)

DXI A_

* FPS(I) c

ER e,

ET(II,12) Er

ETAT(I 1,I2) n,

ETAX(I 1,I2) n_

ETAY(II,I2) _/yor rb

ETI.(I 1,I2)

* FBC l(12,I,J)

&

* FBC2(I 1,I,J)

* GAMR y,

The derivative of T

dimensional array in
therefore runs from 1

with respect to pv, stored as a one-
the sweep direction. The subscript I
to N. (FLOW1)

The derivative of T

dimensional array in
therefore runs from 1

with respect to pw, stored as a one-
the sweep direction. The subscript I
to N. (FLOW1)

Factor by which the time step is multiplied if the solution
changes too slowly. (TIME1)

Factor by which the time step is divided if the solution
changes too quickly. (TIME1)

Maximum vzdue that A_ is allowed to reach, or the maximum
AT used in the time step cycling procedure. (TIMEI)

Minimum value that Az is allowed to reach, or the minimum
A_ used in the time step cycling procedure. (TIME1)

Dummy array used for temporary storage in several subrou-
tines. (DUMMYI)

Computational grid spacing in the _ direction. (NUM1)

Convergence level to be reached. The subscript I = 1 to N,q,
corresponding to the N,_ dependent variables. (TIME1)

I)imensional reference energy, p,u2,. (I-LOW l)

Total energy at time level n. (FLOW1)

The derivative of the computational coordinate _/with respect
to untransformed time t. (METRICI)

The derivative of the computational coordinate _/with respect
to the (.'artesian coordinate x. (METRIC1)

The derivative of the computational coordinate _/with respect
to the Cartesian coordinate y or cylindrical coordinate r.
(METRIC1)

Total energy at previous or intermediate time level. (FLOW1)

Point-by-point values used for steady boundary conditions on
the _ = 0 and _ = 1 surfaces. These are either set in the input,
if a point-by-point distribution is being specified by the user,
or by the program itself. I runs from 1 to N,v, corresponding
to the -V,q conditions needed, and J = 1 or 2, corresponding
to the { = 0 and { = 1 boundaries, respectively. (BC1)

Point-by-point values used for steady boundary conditions on
the _I = 0 and _/= 1 surfaces. These are either set in the input,
if a point-by-point distribution is being specified by the user,
or by the program itself. I runs from 1 to N,q, corresponding

to the N,q conditions needed, and J = 1 or 2, corresponding
to the _/= 0 and _/= 1 boundaries, respectively. (BCI)

Reference ratio of specific heats, cp,lq. (FLOW1)

PROTEUS 2-D Programmer's Manual Variables Listed Alphabetically 21

* Gr_Cl(l,J)

* GBC2(IJ)

GC g_

* GTBCI(K,I,J)

* GTBC2(K,I,.I)

I ISTAG hr

* IISTAGR hr,

* IAV2F,

* IAV2I

* IAV4E

* IAXI

Values used for steady boundary conditions on the { = 0 and
= 1 boundaries, when specified for the entire surface. I runs

from 1 to ,\r, corresponding to the N, conditions needed, and
J = 1 or 2, corresponding to the { = _ and ¢ = 1 boundaries,

respectively. (BC 1)

Values used for steady boundary, conditions on the ,_ = 0 and
r1= 1 boundaries, when specified for the entire surface. I runs
from 1 to N,v corresponding to the N, conditions needed, and
J = 1 or 2, corresponding to the r/= _ and _/= I boundaries,

respectively. (BC 1)

Dimensional proportionality factor in Newton's second law,
either 32.174 lbm-ft/lbr-sec 2, or 1.0 kg-m/N-sec 2. (FLOW1)

A variable used to specify the values for unsteady and time-

periodic boundary conditions on the ¢ = 0 and ¢ = 1 bound-
aries. I runs from 1 to N,v corresponding to the N,q
conditions needed, and J = 1 or 2, corresponding to the _ = 0
and { = 1 boundaries, respectively. For general unsteady
boundary' conditions, K = 1 to NTBC, corresponding to the
time levels in the array NTBCA, and GTBCI specifies the
boundary condition value directly. For time-periodic bound-
ary conditions, K = 1 to 4, and GTBCI specifies the four co-
efficients in the equation used to determine the boundary
condition value. (BC1)

A variable used to specify the values for unsteady and time-
periodic boundary conditions on the _/= 0 and r/= 1 bound-

aries. I runs from 1 to N,,, corresponding to the Noq
conditions needed, and J = 1 or 2, corresponding to the r/ =0

and _/= 1 boundaries, respectively. For general unsteady
boundary conditions, K = 1 to NTBC, corresponding to the
time levels in the array NTBCA, and GTBC2 specifies the
boundary condition value directly. For time-periodic bound-
ary conditions, K = 1 to 4, and GTBC2 specifies the four co-
efficients in the equation used to determine the boundary
condition v',due. (BCl)

Stagnation enthalpy used with constant stagnation enthalpy
option, (FI,OW1)

Dimensional stagnation enthalpy used with constant stag-
nation enthalpy option. (FLOWI)

Flag k_r second-order explicit artifici.,d viscosity; 0 for none, 1
for constant coefficient model, 2 for nonlinear coet]icient

model. (NUMI)

Flag for second-order implicit _ificial viscosity; 0 for none,
1 for constant coefficient model. (NUMI)

Flag for fourth-order explicit artificial viscosity; 0 for none, 1
for constant coefficient model, 2 for nonlinear coefficient

model. (NUM 1)

Flag for two-dimensional planar or axisymmetric flow; 0 for
two-dimensional planar, 1 for a:dsymmetric. (GMTRYI)

22 Variables Listed Alphabetically PROTEUS 2-D Programmer's Manual

IBASE

IBCEI,M(I,J)

* IBCI(I2,I,J)

* IBC2(I1,I,J)

IBVUP(I)

* ICHECK

ICONV

* ICTEST

* ICVARS

* IDEBUG(I)

* IDTAU

* IDTMOD

* IEULER

Base index used with ISTEP to compute one-dimensional
index for two-dimensional array. Then, for example, for any
sweep U(II,I2) = UI(IBASE + ISTEP*(I - 1)) where I is the
grid index in the sxveep direction. (NUMI)

flags for elimination of off-diagonal sub-matrices resulting
from gn-adient or extrapolation boundary" conditions: 0 if
elimination is not necessary', 1 if it is. The subscript I = 1 or
2 corresponding to the sweep direction, and J = 1 or 2 corre-
sponding to the lower or upper boundary' in that direction.
(BC1)

Flags specifying, point-by-point, the type of steady boundary,
conditions used on the _ = 0 and ¢ = l surfaces. These are
either set in the input, if a point-by-point distribution is
specified by the user, or by the program itself. I runs from 1

to N,q, corresponding to the N,q conditions needed, and J = 1
or 2, corresponding to the _ = 0 and _ = 1 boundaries, re-
spectively. (BC1)

Flags specifying, point-by-point, the type of steady boundary
conditions used on the _/= 0 and r/= 1 surfaces. These are
either set in the input, if a point-by-point distribution is
specified by the user, or by the program itself. 1 runs from 1

to N,v corresponding to the N,o conditions needed, and J = 1
or 2, corresponding to the r/= 0 and rt = 1 boundaries, re-
spectively. (BCI)

Flags for updating boundary values from the first sweep after
the last sweep: 0 if updating is not necessary, l if it is. Up-
dating is required when gradient or extrapolation boundary
conditions are used. The subscript I = 1 or 2, corresponding
to the lower or upper boundary in the first sweep direction.
(BCl)

Results are checked for convergence every ICttECK'th time
level. (TIME1)

Convergence flag; 0 if not converged, 1 if converged.
(TIME 1)

Flag for convergence criteria to be used. (TIME1)

Paramcter specifying which variables are being supplied as
initial conditions by subroutine INIT. (FI,OWI)

A 20-element array of flags specifying various debug options.
(IO1)

Flag for time step selection method. (TIME1)

The time step size is modified every' IDTMOD'th time step.

(TIME1)

Flag for Euler calculation option; 0 for a full time-averaged
Navier-Stokes calculation, 1 for an Euler calculation.
(FLOWI)

PROTEUS 2-D Programmer's .Manual Variables Listed Alphabetically 23

IGAM

IGINT(I)

* ltlSTAG

* ILAMV

* ILDAMP

INEG

* INNER

* IPACK(I)

* 1PLOT

* IPLT

* IPLTA(I)

* IPRT

* IPP,TA(I)

* IPRT1

* IPRT2

* IPRT1A(I)

Flagsetbymethodusedto selectGAMR;0if GAMR is de-
faulted(andhencecp and c, are functions of temperature), 1
if GAMR is specified by user (and hence cp and c, are con-
stants). (FLOW1)

Flags for grid interpolation requirement; 0 if interpolation is
not needed, 1 if interpolation is needed. The subscript I = 1
or 2, corresponding to the _ and _/ directions, respectively.
(GMTRYI)

Flag for constant stagnation enthalpy option; 0 to solve the
energy equation, 1 to eliminate the ener D" equation by as-
suming constant stagmation enthalpy. (FLOW1)

Flag for computation of laminar viscosity and "thermal
conductivity; 0 for constant values, 1 for functions of local
temperature. (FLOW 1)

Flag for the Launder-Priddin modified mixing len_h formula
in the inner region of the Baldwin-Lomax turbulence model.
(TURB1)

Flag indicating non-positive values of pressure and/or tem-
perature: 0 for no non-positive values, 1 for some. (FLOW1)

Flag for type of inner r%fon turbulence model. ('FURB 1)

Flags for grid packing option; 0 for no packing, 1 to pack
points as specified by the input array SQ. The subscript
I = 1 or 2, corresponding to the _ and _ directions, respec-
tively. (NUMI)

Flag controlling the creation of an auxiliary file, usually called
a "plot fde", used for later post-processing. (IO 1)

Results are written into the plot file every IPLT time levels.
(I01)

Time levels at which results are written into the plot file. The
subscript 1 = 1 to 101, the maximum number of time levels
that may be written. (IO1)

Results are printed every IPRT time levels. (IO1)

Time levels at which results are printed. The subscript I = 1
to 101, the maximum number of time levels that may be
printed. (IO1)

Results are printed at every IPRTI'th mesh point in the
direction. (IO1)

Results are printed at every IPRT2'th mesh point in the _/
direction. (IO I)

indices at which results are printed. The subscript I = 1 to
a maximum of N 1, the number of grid points in the _ direc-

tion. (I01)

24 Variables Listed Alphabetically PROTEUS 2-D Programmer's Manual

* IPRT2A(I)

* IRI(ST

ISTEP

IS\VEEP

* IS\VIRL

1T n

ITBEG

ITI)BC

ITF, N I)

* ITFSI'A

* ITtIIN(I)

ITSEQ

* ITITRB

* ITXI

* IUNITS

iv i_

* IVOUT(1)

indices at which results are printed. The subscript 1 = 1 to
a maximum of N2, the number of grid points in the _1direc-

tion. (IO1)

Flag controlling the reading and uriting of auxiliary files uscd
for restarting tile calculation in a separate run. (R_qTP, TI)

Multiplication factor used with IBASE to compute one-
dimensional indcx for two-dimensionM array. (N 17M 1)

Flag specifying AI)I sweep direction; 1 for ¢ direction and 2
for '1 direction. (NL'MI)

Flag for swirl in axisymmetric flow: 0 fl)r no swirl, 1 fi3r swirl.
(FLOWl)

Current time step number, or known time level. Time step
number n updates the solution liom timc level n to n 4- 1.
(TIME1)

The time timc step number, or known lime level n, "it the
beginning of a run. For a non-restart case, I IBI"(I: 1.
(TIME1)

Flag for time-dependent boundary conditions; 0 if all bound-
ary conditions arc ._tcady, I if any gener,d unsteady bound'aw
conditions are used, 2 if only steady and time-periodic

boundars conditions are used. (BC1)

The final time step number. (TI\IlSI)

Flag for computing turbulent viscosity on constant _l lincs.
(TURBI)

Flags for thin-layer option; 0 to include 2nd. derivative
viscous terms, 1 to eliminate them. lhe subscript I = 1 or 2,
corresponding to the _ and _I directions, respectively.
(FLOWI)

Current time step sequence number. (TIMEI)

Flag for turbulent flow option; 0 for laminar flow, 1 ff)r tur-
bulent flow using the Baldwin-lx)max algebraic turbulence
model. (TURB1)

Flag for computing turbulcnt viscosity on constant { lines.

(TURBI)

Flag for type of units used to specie reference conditions;
0 for English units, 1 for S1 milts. (IO1)

Grid point index in the "vectorized" direction (i.e., the non-
sweep direction in which the "BI.K" routines arc vcctorized).
Therefore, IV =j for the first sweep and i for the second

sweep. (NUM1)

A 50-element array specifying which variables are to be

printed. (IO1)

PROTEUS 2-D Programmer's Manual Variables l.isled Alphabetically 25

IWALLI(I)

IWALL2(I)

II i

12 j

met(i j)

* JBC2(I,J)

JI(I 1,I2) J-l or rJ -1

* JTBC l(l,J)

* JTBC2(I,J)

KBCPER(I)

* KBCI(J)

* KBC2(J)

KT(II,12) k

Flags indicating type of surfaces in the _ direction; 0 for a free
boundary, 1 for a solid wall. The subscript I = 1 or 2, corre-

sponding to the _ = 0 and _ = 1 surfaces, respectively.
(TURBI)

Flags indicating type of surfaces in the r/direction; 0 for a free
boundary, 1 for a solid wall. The subscript I = 1 or 2, corre-
sponding to the _/= 0 and _l= 1 surfaces, respectively.
(TURB1)

Grid point index in the _ direction. (NUM 1)

Grid point index in the _/direction. (NUMI)

Flags specifying the type of steady boundary conditions used
on the _ = 0 and _ = 1 surfaces, when specified for the entire

surface. I runs from 1 to N,_, corresponding to the ;V_q con-
ditions needed, and J = 1 or 2, corresponding to the _ = 0 and

= 1 boundaries, respectively. (BCI)

Flags specifying the type of steady boundary conditions used
on the rt = 0 and rt = 1 surfaces, when specified for the entire

surface. I runs from 1 to N,q, corresponding to the N,q con-
ditions needed, and J = 1 or 2, corresponding to the r/= 0 and
_/= 1 boundaries, respectively. (BCI)

Normally the inverse Jacobian of the non-orthogonal grid
transformation. For the COEF routines in axisymmetric
flow, it is temporarily redefined as the product of the local
radius and the inverse Jacobian. This is a type REAL vari-
able. (METRIC1)

A variable specifying the type of time dependency for the
boundary conditions on the _ = 0 and _ = 1 boundaries. I

runs from 1 to N,q, corresponding to the N,q conditions
needed, and J = 1 or 2, corresponding to the _ = 0 and _ = 1
boundaries, respectively. (BC1)

A variable specifying the type of time dependency for the
boundary conditions on the r/= 0 and _ = 1 boundaries. I
runs from 1 to N,q, corresponding to the N,q conditions
needed, and J = 1 or 2, corresponding to the _/= 0 and rt = 1
boundaries, respectively. (BC1)

Flags for spatially periodic boundary conditions: 0 for non-
periodic, 1 for periodic. The subscript I = 1 or 2, corre-
sponding to the _ and r/directions, respectively. (BC1)

Flags for type of boundaries in the _ direction. The subscript
J = 1 or 2, corresponding to the _ = 0 and _ = 1 boundaries,
respectively. (BC 1)

Flags for type of boundaries in the r/direction. The subscript
J = 1 or 2, corresponding to the r/= 0 and _/= 1 boundaries,
respectively. (BC 1)

Effective thermal conductivity coefficient at time level n. This
is a type REAL variable. (FLOW1)

26 Variables Listed Alphabetically PROTEUS 2-D Programmer's Manual

* KTR k,

LA(I 1,I2) 2

* LR Lr

LRMAX(I,J,K)

LWAKE 1

I.WAKE2

* MACtlR 3t,

METT(IV,I) 4, or _/,

METX(IV,I) ix or _

METY(IV,I) _y or _/y

MU(II,I2)

* MUR _,

M UT(I 1,12) /_,

Dimensional reference thermal conductivity coefficient• This

is a type REAL variable. (FLOW1)

l!ffective second coefficient of viscosity at time level n (usually
assumed equal to -2/2/3.) This is a type REAL variable.
(FI.OW1)

I)imensional reference length. This is a type REAL variable.

(I:IDW1)

The grid indices corresponding to the location of the ma.'d-
mum absolute value of the residual. The subscript I = 1 or
2, corresponding to the _ and _1directions, respectively, J = 1

• r "to Y,,q, corrcspondmg to the _\¢q coupled governing, equations,
and K = I or 2, corresponding to the residual computed
without and with the artificial viscosity terms. (TIMEI)

(}rid point index in the _ direction used as the orion for
computing length scales for free turbulent flows. (TURBI)

Grid point index in the _/ direction used as the orion for
computing length scales for free turbulent flows. (TURB 1)

m

P, eference Math number, u,/(y,R 7,) 1'2. This is a type RI2AL
variable. (FI OWl)

The derivative of the computational coordinate in the ADI
sweep direction with respect to untransfi)rmed lime t. 1 is the
grid index in lhc sweep direction, running from 1 to N. IV is
the gj'id index in the "vectorized" direction (i.e., the non-sweep
direction in which the "BI;K" routines are vectorized), and
runs from 2 to N_-1. This is a type REAl, variable.
(MFSIRIC 1)

The derivative of the computational coordinate in the ADI
sweep direction with respect to the Cartesian coordinate x. I
is the grid index in the sweep direction, running from 1 to N.
IV is the grid index in the "vectorized" direction (i.e., the
non-sweep direction in which the "BI.K" routines are
vectorized), and runs from 2 to N_ - 1. This is a type REAL
variable. (METRIC1)

The derivative of the computational coordinate in the ADI
sweep direction with respect to the Cartesian coordinate y or
cylindrical coordinate r. I is the grid index in the sweep di-
rection, running from 1 to N. IV is the grid index in the
"vectorized" direction (i.e., the non-sweep direction in which
the "BLK" routines are vectorized), and runs from 2 to

:V_- 1. This is a type REAL variable. (METRICI)

Effective viscosity coefficient at time level n. This is a type
REAL. variable. (FLOW1)

Dimensional reference viscosity coefficient. This is a type
REAL variable. (t:LOW1)

Turbulent viscosity coefficient at time level n. This is a type
REAL variable. (FLOW1)

PROTEUS 2-D Programmer's Manual Variables Listed Alphabetically 27

NAMAX

NBC

NC

* NDTCYC

NEN

NET

NEQ

NEQP

* NGIiOM

Neq

* NGRII)

* NIIIST

* NIIMAX

NIN

* N ITAVG

NMAXP

* NOUT

* NPLOT

NPI.OTX

NPRT1

NPRT2

NPTS i\r

A PARAMETER equal to the maximum number of time

steps allowed in the moving average convergence test (lhe
ICTEST= 2 option). (PARAMS1)

A PARAMEI'ER equal to the number of boundary" condi-

tions per equation. (PARAMSI)

Array index associated with the continuity equation.
(_UMI)

Number of time steps per cycle used in the time step cycling
procedure. (TI.ME 1)

Array index associated with the enerD' equation. (NUM 1)

Array index associated With the dependent variable Er.
(NL'M1)

The number of coupled governing equations actually being
solved. (NUM 1)

A PARAMETER equal to the maximum number of coupled

equations that can be solved. (PARAMSI)

Flag used to specify' type of computational coordinates; 1 for
Cartesian (x,y) coordinates, 2 for polar (r',0') coordinates, and
10 to read the coordinates from unit NGRID. (GMTRY1)

ITnit number for reading grid file. (IO1)

Unit number for writing convergence history file. (IO1)

Maximum number of time levels allowed in the printout of
the convergence history fde (not counting the ftrst two, which
are always printed.) (IO 1)

Unit number for reading namelist input. (IO1)

Number of time steps used in the moving average convergence
test. (TIME1)

A I_ARAMF, TER equal to the maximum of N1P and N2P.
(PARAMSI)

Unit number for writing standard output. (IO 1)

Unit number for writing CONTOUR or PLOT3D Q plot file.

(IO1)

Unit number for writing PLOT3D XYZ plot ftle. (IO1)

Total number of indices for printout in the _ direction. (IO1)

Total number of indices for printout in the _/direction. (IO 1)

The number of grid points in the sweep direction. (NUM 1)

28 Variables Listed Alphabetically PROTEUS 2-D Programmer's .Manual

NPTI Nj or Nl + 1

NPT2 N2 or ,_ + 1

NR

* NRQIN

* NRQOUT

NRU

NRV

NRW

* NRXIN

* NRXOUT

* NSCRI

* NTBC

* NTBCA(I)

* NTIME(I)

NTOTP

NTP

* NTSEQ

NTSEQP

The number of grid points in the _ direction used in com-

puting coefficients: N_ for non-periodic boundary' conditions;
N 1+ 1 for spatially periodic boundary conditions. (NUM 1)

The number of grid points in the _l direction used in com-
puting coefficients: N2 for non-periodic boundaD' conditions;
,_,½+ 1 for spatially periodic boundary; conditions. (NUN/1)

Array index associated with the dependent variable p.

(NUMI)

Unit number for reading restart flow field. (RSTRTI)

Unit number for writing restart flow field. (RSTRT1)

Array index associated with the dependent variable pu.

(NUM 1)

Array index associated with the dependent variable pv.
(SUM1)

Array index associated with the dependent variable pw.
(NUM1)

Unit number for reading restart computational mesh.

(RSTRTI)

Unit number for writing restart computational mesh.

(RSTRTI)

Unit number for scratch file in subroutine PLOT. (IO 1)

Number of values in the tables of GTBC 1 and/or GTBC2 vs.

NTBCA for general unsteady boundary' conditions. (BC 1)

Time levels at which GTBC1 and/or GTBC2 are specified for

general unsteady boundary' conditions. The subscript I = 1 to
NTBC, corresponding to the NTBC values in the table.
(BCi)

Maximum number of time steps to march. I runs from 1 to
NTSEQP, corresponding to the time step sequence number.

(TIME1)

A PARAMETER equal to the total storage required for a

single two-dimensional array (i.e., N 11) x N2P).
(PARAMS 1)

A PARAMETER equal to the maximum number of entries
in the table of time-dependent boundary" condition values.

(PARAMS1)

The total number of time step sequences being used.

(TIME1)

A PARAMETER equal to the maximum number of time
step sequences in the time step sequencing option.

(PARAMS 1)

PROTEUS 2-D Programmer's Manual Variables Listed Alphabetically 29

NV A'_

NXM

NYM

NZM

N1

Nit)

N2

N2P

i_r2

P(II,I2) p

PR p,

PRLR Pr¢

PRR Pr_

PRT P6

P0 Pu

P, AX(I) 1 or r

RER Re,

RESAVG(J, K) R,vs

RESI.2(J,K) RL2

RESMAX(J,K) R_._

The number of grid points in the "vectorg,.ed" direction (i.e.,
the non-sweep direction in which the "BI.K" routines are
vectorized). Therefore, NV = ,¥2 for the first sweep and N_ tor
the second sweep. (NUMI)

tM"ray index associated with the x-momentum equation.
(NLMI)

Array index associated with the y or r-momentum equation.
(NUMI)

_M'ray index associated with the swirl momentum equation.
(NUMI)

The number of grid points in the _ direction. (NUM 1)

A PARAMETER equal to the maximum number of grid
points in the _ direction. (t)ARAMSI)

The number of grid points in the)1 direction. (NUM1)

A PARAMETER equal to the maximum number of grid
points in the _/direction. (PARAMS 1)

Static pressure at time level n. (FLOWI)

Dimensional reference static pressure, Io,RT./g¢. (FLOW l)

Reference laminar Prandtl number, q,#,/k,, where
6, = y,R/(},,- I). (FLOW1)

Reference Prandtl number, ,u,u2/k,T,. (FI.OWl)

Turbulent Prandtl number, or, if non-positive, a flag indicat-
ing the use of a variable turbulent l)randtl number. (TURB 1)

Initial static pressure. (IC1)

1 for two-dimensional planar flow, and the local radius r for
axisymmetric flow. I is the grid index in the sweep direction,
running from 1 to N. (METRICI)

Reference Reynolds number, pAcL,/t,,. (F I.OW 1)

The average absolute value of the residual for the prcvious

time step. The subscript J = 1 to N,v corresponding to the
N,q coupled governing equations, and K = 1 or 2, corre-
sponding to the residual computed without and with the arti-
ficial viscosity terms. (TIMEI)

The I. 2 norm of the residual tbr the previous time step. The
subscript J = 1 to A';, corresponding to the ,\",q coupled gov-
erning equanons, an_t K = 1 or 2, corresponding to the resi-
dual computed without and with the artificial viscosity terms.
(TIME1)

The maximum absolute value of the residual for the previous

time step. The subscript J = 1 to A",q, corresponding to the
,N]q coupled governing equations, and K = 1 or 2, corre-

30 Variables Listed Alphabetically PROTEUS 2-D Programmer's Manual

* REXT1 R%,

* REXT2 R%,

RG R

RGAS R

RltO(ll,I2) p

RIIOL(II,I2) p

* RtlOR p,

* RMAX r',,ox

* RMIN r'm,_

S(IV,I,J) S

* SQ(I,J)

T(II,I2) T

TAU(I 1,I2) -r

TttC(I) 01, 02

* TIlE(I) 01, 02, 03

* TttMAX 0"¢,

* TIIMIN 0;,,_

sponding to the residual computed without and with the arti-
ficial viscosity terms. (TIMt';1)

Reynolds number at the be_nning of the transition region,
based on maximum total velocity and distance from _ = 0, for
flow predominantly in the _ direction with a leading edge at

= 0. (TURB1)

Reynolds number at the beginning of the transition region,
based on maximum total velocity and distance from _/= 0, for
flow predominantly' in the rt direction with a leading edge at

= 0. (TURB1)

Dimensional gas constant. (FLOW1)

Nondimensional gas constant. (FLOWl)

Static density at time level n. (FLOW1)

Static density at previous or intermediate time level.
(FLOWI)

Dimensional reference density. (FLOW1)

Maximum r' coordinate for polar grid option. (GMTRY1)

Minimum r' coordinate for polar grid option. (GMTRY1)

Subvector of source terms at grid point I in the block
tridiagonal system of equations. I is the grid index in the
sweep direction, running from 1 to N. IV is the grid index in
the "vectorized" direction (i.e., the non-sweep direction in
which the "BLK" routines are vectorized), and runs from 2 to

N_- 1. The subscript J = 1 to N,v, corresponding to the N,q
coupled governing equations. (NUM 1)

An array controlling the packing of grid points using the
Roberts transformation. The subscript I = 1 or 2, corre-
sponding to the ¢ and r/ directions, respectively. SQ(I,1)
specifies the location of packing, and SQ(I,2) specifies the
amount of packing. (NUMI)

Static temperature at time level n. (FLOW1)

Current value of the time marching parameter. (TIME1)

A two-element array, specifying the time difference centering
parameters used for the continuity equation. (NUM1)

A three-element array specifying the time difference centeAng
parameters used for the energy equation. (NUM1)

Maximum 0' coordinate in degrees for polar grid option.

(GMTRY1)

Minimum 0' coordinate in degrees for polar grid option.

(GMTRY1)

PROTEUS 2-D Programmer's Manual Variables Listed Alphabetically 31

* TttX(I) OD 02 , 03

* THY(1) 01, 02, 03

* TIIZ(I) G, 02, 03

* TITLE

TL(l 1,I2) T

* TR 7",

* TO T o

U(I 1,I2) u

UL(! 1,I2) u

* UR ur

* L'0 u0

V(I 1,I2) v

VI,(I 1,I2) v

VORT(II,I2) 161

* V0 v0

W(II,I2) w

WL(II,12) w

WO wo

X(II,I2) x

XIT(II,I2) _,

XIX(II,12) ¢_

32 Variables Listed Alphabetically

A three-element array specifying the time difference centering
parameters used for the x-momentum equation. (NUM1)

A three-element array specifying the time difference centering
parameters used for the y or r-momentum equation. (NUM 1)

A three-element array specifying the time difference centering
parameters used for the swirl momentum equation. (NUM 1)

Title for printed output and CONTOUR plot file, up to 72

characters long. This is a type CltARACTER variable.
(TITLE1)

Static temperature at previous or intermediate time level.
(FLOW1)

Dimensional reference temperature. (FLOW 1)

Initial static temperature. (ICI)

Velocity in the Cartesian x direction at time level n.
(FLOWI)

Vclocity in the Cartesian x direction at previous or interme-

diate time level. (FLOW1)

Dimensional reference velocity. (FLOW1)

Initial velocity in the Cartesian x direction. (IC1)

Velocity in the Cartesian y direction or cylindrical r direction
at time level n. (FLOWI)

Velocity in the Cartesian y direction or cylindrical r direction
at previous or intermediate time level. (FLOWI)

Tot',d vorticity magnitude. (TURB1)

Initial velocity in the Cartesian y direction or cylindrical r di-
rection. (ICI)

Swirl velocity at time level n. (FLOWI)

Swirl velocity at previous or intermediate time level.
(FLOW1)

Initial swirl velocity. (IC 1)

Cartesian x coordinate. (METRIC1)

The derivative of the computational coordinate ¢ with respect
to untransformed time t. (METRICI)

The derivative of the computational coordinate ¢ with respect
to the Cartesian coordinate x. (METRICI)

PROTEUS 2-D Programmer's Manual

XIY(ll,[2)

* XMAX x

* XMIN x

Y(lI,I21 _' or r

+ '(MAX 3',_+_

* YMIN y,,,o

'lhe derivative of the computational coordinate _ with respect
to the Cartesian coordinate y or cylindrical coordinate r.
(ME+IRICI)

Maximum x coordinate for Cartesian grid option.
(GM-I'RY1)

Minimum x coordinate for Cartesian _-id option.
(GMTRY1)

(:artesian y coordinate or c._lindrical r coordinate.
(MI(/I'RIC 1)

Maximum y coordinate fi)r Cartesian grid option.
(GMIRYI)

Minimum 3' coordinate for (+artesian grid option.
((IMTI_,Y 1)

3.3 ('()MM()N VARIAI+I.EN I,IS/'H) .%Y?+IBOIJCAIJ,Y

In tim, suction man\ of the l'l+.t)l'ti!_ S Fortran variables stored in common blocks are dclincd, listed

symbolically. Note that this list does not include those variables without symbolic representations, such
as vat-ious tlags, ¢+r those whose mcaning depends on other parameters, such as the boundar)_ condition
values and swccp direction metrics. +lhc variables markcd with an asterisk arc input variables. More details
on these ma> be flmmt in Suction 3.1 of Volume 2. The common block each variable is stored in is given
in parentheses at the end of each dctinition, l:or set)scripted variables, the subscripts arc dcfincd along with
the variable, except ft_r the _,ub-,cripts I I and 12, _ hich arc the indices i and j in the g and rl directions, rc-
spcclivt:iy, and run from 1 to _\'1 and _\2-

(.Muss otherwise noted, all variables representing physical quantities arc nondinlcnsional. "lhe
nomtimcnsionalizing procedure is dcscribcd in Section 3.1.1 of Volume 2. "1he t3 pc (real or integer) of the
_ariablcs tollt)_s standard |:ortran convention, unless stated otherwise. (I.e., those starting with I, J, K,
1., Xl, or N arc integer, and the remainder are real.)

[:ortran
Symbol Variable i)cfinition

4: /t + API I.;S Van Driest damping constaut in thc inncr and outcr rcgions
of the Baldwin-iomaxturbutcncc model. (TISRBI)

A A(IV,1,J,K) Subdiagonal submatrix of coefficients at grid point I in the
block tridiagonal cocflicicnt matrix. 1 is the grid index in the
sweep direction, running from 1 to N. IV is the gaid index in
the "vectorized" direction (i.e., the non-sweep direction in
wlfich the "BI K" routines are vectorizcd), and runs from 2 to

N_- 1. The subscript .I- 1 to N_v, corresponding to the .\:,q
coupled governing equations, and K = 1 to N_,., corresponding
to the ,Y+¢dependent variables. (NUM I)

* B CB Constant used in the formula for the Klcbanoff intennittency
factor f',.e_,sin the outer re,on of the Baldwin-I omax turbu-
lence model, and in the inner rcNon of the Spalding-
Klcinstein turbulence model. (II..TP, BI)

B I](IV,I,+I,K) l)iagonal submatrix of coefficients at grid point I in the block
tridiagonal coefficient matrix. I is the grid index in the sweep
direction, running from 1 to N. IV is the grid index in the

PR(YI'HYS 2-!) Programmer's ._lanual Variables Listed Alphabetically 33

cp CP(! 1,I2)

q CV(II,I2)

c. ccP

C_pl- C_p4 CCPI-CCP4

C,1 - C,2 CKI-2

* C_._ CKLEB

C,z - C.2 CMU1-2

* C_, CWK

C C(IV,I,J,K)

e, ER

E r ET(I 1,I2)

E r E'FI.(II,I2)

gc GC

hr t IS'FAG

* h_; tISTAGR

i I1

i, IV

"vectorized" direction (i.e., the non-sweep direction in which
the "BLK" routines are vectorized), and runs from 2 to

N,- 1. The subscript J = 1 to IV,q, corresponding to the ;\'_
coupled governing equations, and K = 1 to N,v corresponding
to the ;V,q dependent variables. (NUM1)

Specific heat at constant pressure at time level n. (FLOW1)

Specific heat at constant volume at time level n. (FLOWI)

Constant used in the outer region of the Baldwin-Lomax tur-
bulence model. (TURBI)

Constants in empirical formula for specific heat as a function
of temperature. (FLOWI)

Constants in empirical formula for thermal conductivity coef-
ficient as a function of temperature.

Constant used in the formula for the Klebanoff intermittency
factor FK_,_ in the outer region of the Baldwin-Lomax turbu-
lence model. (TURBI)

Constants in empirical formula for laminar viscosity coeffi-
cient as a function of temperature. (FLOWI)

Constant used in the formula for F,o,, in the outer region of
the Baldwin-I,omax turbulence model. (TURB1)

Superdiagonal submatrix of coefficients at grid point I in the
block tridiagonal coefficient matrix. I is the grid index in the
sweep direction, running from 1 to N. IV is the grid index in
the "vectorized" direction (i.e., the non-sweep direction in
which the "BLK" routines are vectorized), and runs from 2 to

N, - 1. The subscript J = 1 to N_o, corresponding to the N,q
coupled governing equations, and K = I to N,q, corresponding
to the :V,q dependent variables. (NUM1)

Dimensional reference energy, p,u]. (FLOWI)

Total energy at time level n. (FLOWI)

Total energy at previous or intermediate time level. (FLOW1)

Dimensional proportionality factor in Newton's second law,
either 32.174 lbm-ft/lbcsec 2, or 1.0 kg-m/N-sec 2. (FLOWI)

Stagnation enthalpy used with constant stagnation enthalpy
option. (FLOWI)

Dimensional stagnation enthalpy used with constant stag-
nation enthalpy option. (FLOWI)

Grid point index in the { direction. (NUM1)

Grid point index in the "vectorized" direction (i.e., the non-
sweep direction in which the "BLK" routines are vectorized).
Therefore, IV =j for the first sweep and i for the second
sweep. (NUM1)

34 Variables Listed Symbolically PROTEUS 2-D Programmer's Manual

J

d I

I2

JI(ll,I2)

KT(II,12)

* k, KTR

* K CCLAU

* L, 1R

* Mr MACt tR

n 11"

* r/ CNA

* /1 CNL

N NPTS

?¢_q NEQ

N, NV

N1

NPTI

N_ + 1 NPTI

* l_ N2

r

A 2 NPT2

Grid point index in the r/direction. (NUMI)

Inverse Jacobian of the non-orthogonal grid transformation.

(For axisymmetric flow, in the COEF routines JI = rd i the
product of the local radius and the inverse Jacobian.) This is
a type REAL variable. (METRICI)

Effective thermal conductivity coefficient at time level n. This
is a type REAl, variable. (FI_OWl)

l)imensional reference thermal conductivity coefficient. This

is a type REAl, variable. (FLOV¢I)

Clauser constant used in the outer region of the Baldwin-
l,omax turbulence model. (TURB1)

I)imensional reference length. This is a type RI_AL variable.
(t'I_OWl)

E

Reference Mach number, u,l(y_R Tr)-. This is a type REAL
variable. (FLOW1)

Current time step number, or known time level. "Finm step
number n updates the solution from time level n to n + 1.
(TIMEI)

Exponent in the formula used to average the two outer region
#, profiles that result when both boundaries in a coordinate
direction are solid surfaces. (TURB1)

Exponent in the Launder-Priddin modified mixing length
formula for the inner region of the Baldwin-Lomax turbulence
model. (TURB1)

The number of grid points in the sweep direction. (NUN/1)

The number of coupled governing equations actually being
solved. (NUM1)

]'he number of grid points in the "vectorized" direction (i.e.,
the non-sweep direction in which the "BLK" routines are
vectorized). Therefore, NV = A½ for the first sweep and N Lfor
the second sweep. (NUM1)

The number of grid points in the _ direction. (NUM 1)

The number of grid points in the { direction used in com-
puting coefficients (only for non-periodic boundary condi-
tions.) (NUM1)

The number of grid points in the _ direction used in com-
puting coefficients (only for spatially periodic boundary con-
ditions.) (NUM1)

The number of grid points in the _I direction. (NUM 1)

]he number of grid points in the '7 direction used in com-
puting coefficients (only for non-periodic boundaI T condi-
tions.) (NUM 1)

PROTEUS 2-D Programmer's Manual Variables Listed Symbolically 35

_\'2 + 1 NPI2

p P(l 1,12)

p, PR

p. P0

?p/_E r I)Pl)!!T(I)

@/0_, I)I'I)R I IO(I)

@/?(,u) I)t'I)R i ;(Ii

@/,_(f,v) I)PI)RV(1)

?p/,_(t)wJ I)PI)I_,W(I)

* t'r_, lq(l.R

Pr7 PRI{

Pr, PRT

AQ_,x CI I(]AVG(I)

AQ (711GMAX(I,.I)

r "1"(11,121

r RAX(1)

lhc number of grid points in the J7 direction used in com-

puting coetticients (only R)r spat\ally periodic boundary con-
ditions.) (NUMI)

Static pressure at time level n. (FIOWI)

l)imensional reference static pressure, p,R 7;/g_. (FI.OWI)

Initial static pressure. (I('1)

The derivative of /9
dimensional array in
therefore runs from 1

with respect to Er, stored as a one-
the sweep direction. The subscript I
to X. (FLOWI)

The derivative of p
dimensional array it]
therefore runs from I

with respect to p, stored as a one-
the sweep direction. The subscript t
to/','. (FI.OWI)

lhe derivative of /,
dimensional array in
thcrctorc runs from 1

with respect to t,u, stored as a one-
the sx_eep direction. The subscript I
to ,\'. (i:IO\VI)

l'hc derivative of p
dimensional alTay in
therefore runs from 1

with respcct to pv, stored as a one-
the s_veep direction. The subscript l
to N. (FI.OW1)

lhe derivative of p
dimensional array in
therefore runs from 1

with respect to pw, stored as a one-

the sweep direction. The subscript l
to N. (FI,OW1)

Reference_ laminar t)randtl number, G/adk,, where
c. -- 7',R/(;,',- 1). (i:I.()WI)g. , ,

Reference Prandtl number, p*fli7/k,7). (I:IX)WI)

Turbulent Prandtl number, or, if non-positive, a flag indicat-

ing the use of a variable turbulent Prandtl number. (TURB 1)

Maximum change in absolute value of the dependent vari-
ables, averaged over the last NII'AVG time steps. 4 -lhe sub-

script 1--1 to N<q, corresponding to the _,X_,;dependent
variables. ('I'IME 1)

Maximum change in absolute valuc of the dependent variables

over a single lime step. _ The subscript I = 1 to N,_., corre-
sponding to the _\',q dependent variables, and J = 1 to
NITAVG, the number of thnc steps used in the moving av-

erage option tot detennining convergence. ('IIM E 1)

(?',lindrical r coordinate. (MI';TRIC I)

I.oc_d radius r for axisymmetric flow. I is the grid index in the
sweep dircction, running from 1 to N. (METRIC1)

4 For the energy equation, the change in I-.r is dix ided by /:'r, = ,%R-Td0'_ - 1) + u2/2, so that it is the same order
of magnitude as the other conservation variables.

36 Variables l.isted Symbolically PROTEUS 2-D Programmer's Manual

* r',... RMAX

* r'_,. RMIN

Ra,g RESAVG(J,K)

Re2 RESL2(J,K)

R,,_, RESMAX(J,K)

* _ RG

R RGAS

* Re, RER

* Re._ r REXT1

* Re_. REXT2

S S(IV,I,J)

* At DT(I)

T T(II,I2)

T TL(II,I2)

Maximum r' coordinate coordinate for polar grid option.
(GMTRY1)

Minimum r' coordinate coordinate for polar grid option.
(GMTRY1)

The average absolute value of the residual for the previous

time step. The subscript J = 1 to Neq, corresponding to the
,' coupled governing equations, and K = 1 or 2, corre-
sponding to the residual computed without and with the arti-
ficial viscosity terms. (TIMEI)

The & norm of the residual for the previous time step. The

subscript J = 1 to Nee corresponding to the ,'V,qcoupled gov-
erning equations, and K = 1 or 2, corresponding to the resi-
dual computed without and with the artificial viscosity terms.
(TIME1)

The ma:dmum absolute value of the residual for the previous

time step. The subscript J =-- 1 to N,q, corresponding to the
N_q coupled governing equations, and K = 1 or 2, corre-
sponding to the residual computed without and with the arti-
ficial viscosity terms. (TIMEI)

Dimensional gas constant. (FLOW1)

Nondimensional gas constant. (FLOWI)

Reference Reynolds number, p,u,L,/l_,. (FLOWI)

Reynolds number at the beginning of the transition region,
based on maximum total velocity and distance from _ = 0, for

flow predominantly in the _ direction with a leading edge at
= 0. (TURBI)

Reynolds number at the beginning of the transition region,
based on maximum total velocity and distance from rt = 0, for
flow predominantly in the _t direction with a leading edge at
r/= 0. (TURB1)

Subvector of source terms at grid point I in the block
tridiagonal system of equations. I is the grid index in the
sweep direction, running from 1 to N. IV is the grid index in

the "vectorized" direction (i.e., the non-sweep direction in
which the "BLK" routines are vectorized), and runs from 2 to

N_- 1. The subscript J = 1 to A_q, corresponding to the N_q
coupled governing equations. (NUM l)

The time step size, when specified directly as input. I is the
time step sequence number, and runs from 1 to NTSEQ.

(TIME1)

Static temperature at time level n. (FLOW1)

Static temperature at previous or intermediate time level.

(FLOWI)

PROTEUS 2-D Programmer's Manual Variables Listed Symbolically 37

8TJOEr I)TDt':T(I)

OT/Op I)TDRItO(I)

aTla(nu) I)TI)RU(I)

aTla(p) DTDRV(1)

OTlO(pw) DTDRW(I)

7", TR

To T0

u u(I 1,I2)

u UL(II,I2)

u, UR

u0 U0

v V(II,I2)

v V/(II,I2)

v0 V0

w W(II,I2)

w WL(II,I2)

w0 W0

x X(II,12)

x_,, XMAX

* Xm,. XMIN

y Y(II,I2)

The derivative of T

dimensional array in
therefore runs from 1

with respect to E T, stored as a one-
the sweep direction. The subscript I
to N. (FLOW1)

The derivative of T

dimensional array in
therefore runs from 1

with respect to p, stored as a one-
the sweep direction. The subscript I

to N. (FLOW1)

The derivative of T

dimensional array in
therefore runs from 1

with respect to pu, stored as a one-
the sweep direction. The subscript I
to N. (FLOWl)

The derivative of T

dimensional array in
therefore runs from 1

with respect to pv, stored as a one-
the sweep direction. The subscript I
to N. (FLOW1)

The derivative of T

dimensional array in
therefore runs from 1

with respect to pw, stored as a one-
the sweep direction. The subscript 1
to N. (FLOWl)

Dimensional reference temperature. (FLOW1)

Initial static temperature. (IC1)

Velocity in the Cartesian x direction at time level n.
(FLOWI)

Velocity in the Cartesian x direction at previous or interme-
diate time level. (FLOW1)

Dimensional reference velocity. (FLOW1)

Initial velocity in the Cartesian x direction. (ICI)

Velocity in the Cartesian y direction or cylindrical r direction
at time level n. (FLOW1)

Velocity in the Cartesian y direction or cylindrical r direction
at previous or intermediate time level. (FLOW1)

Initial velocity in the Cartesian y direction or cylindrical r di-
rection. (ICI)

Swirl velocity at time level n. (FLOWI)

Swirl velocity at previous or intermediate time level.

(FLOW1)

Initial swirl velocity. (IC 1)

Cartesian x coordinate. (METRIC1)

Maximum x coordinate for Cartesian grid option.

(G*ITRY1)

Minimum x coordinate for Cartesian grid option.

(GMTRY1)

Cartesian y coordinate. (METRIC1)

38 Variables Listed Symbolically PROTEUS 2-I) Programmer's Manual

* Ym_x YMAX

* ,v,_,_ YMIN

Maximum y coordinate for (;artesian mid option.

(GNI'I'RY 1)

Minimum 3' coordinate for Cartesian gyid option.

(GMTRY1)

<_ AI,PttA

* 0_ 1 ALPIIAI

* % AI,PI IA2

* e I'PS(I)

* e_) CAVS2F,(I)

* e_) CAVS4E(I)

* e; CAVS2I(I)

_/, ETAY(I 1,I2)

n, METY(IV,I)

r/, ETAT(I 1,I2)

,7, METT(IV,I)

n, E'I'AX(II,I2)

I)ifference centering parameter for first derivatives in the ADI

sweep direction. (NUMI)

I)iffercncc centering parameter for _ direction first derivatives.
ALPIIAI = 0.0, 0.5, or 1.0 corresponding to forward, central,
and backward differences, respectively. (NUM1)

Difference centering parameter for _/direction first derivatives.
AI,PIIA2 = 0.0, 0.5, or 1.0 corresponding to forward, central,
and backward differences, respcctivcly. (NUMI)

Convergence level to be reached. The subscript I = 1 to N<q,
corresponding to the ?V,q dependent variables. (TIME l)

Second-order explicit artificial viscosity coefficient in constant
coefficient model. The subscript I = 1 to ,\%, corresponding

to the N,q coupled governing equations. (NUM1)

Fourth-order explicit artificial viscosity cocfficicnt in constant
coefficient model. The subscript I = I to N,q, corresponding

to the :V,q coupled governing equations. (NUM 1)

Second-order implicit artificial viscosity coefficient in constant
coefficient model. The subscript I = 1 to N,q, corresponding

to the N,q coupled governing equations. (NUM 1)

The derivative of the computational coordinate i,/with respect

to the cylindrical coordinate r. (METR1CI)

The derivative of the computational coordinate _ with respect
to the cylindrical coordinate r (second ADI sweep only.) I is

the grid index in the sweep direction, running from 1 to N.
IV is the grid index in the "vectorized" direction (i.e., the
non-sweep direction in which the "BLK" routines are
vectorized), and runs from 2 to N, - 1. This is a type REAL

variable. (METRICI)

The derivative of the computational coordinate rl with respect
to untransformed time t. (METRICI)

The derivative of the computational coordinate rl with respect
to untransformed time t (second ADI sweep only.) I is the

grid index in the sweep direction, running from 1 to N. IV is
the grid index in the "vectorized" direction (i.e., the non-sweep
direction in which the "BLK" routines are vectorized), and

runs from 2 to N,-1. This is a type REAL variable.

(METRIC 1)

The derivative of the computational coordinate _/with respect
to the Cartesian coordinate x. (METRICI)

PROTEUS 2-D Programmer's Manual Variables Listed Symbolically 39

/ METX(IV,I)

r/y ETAY(I 1,12)

_/y METY(IV,I)

A_/ DEL

Aq DETA

* _ CVK

* _2 CAVS2E(I)

* K4 CAVS4E(I)

* y, GAMR

i LA(II,12)

u MU(II,12)

* #, MUR

u, MUT(II,12)

_r XIY(II,I2)

_r METY(IV,I)

The derivative of the computational coordinate J7 with respect
to the Cartesian coordinate x (second ADI sweep only.) I is
the grid index in the sweep direction, running from 1 to N.
IV is the D-id index in the "vectorized" direction (i.e., the
non-sweep direction in which the "BLK" routines are
vectorized), and runs from 2 to N_ - 1. This is a type REAL
variable. (METRIC1)

The derivative of the computational coordinate _ with respect
to the Cartesian coordinate y. (METRICI)

The derivative of the computational coordinate _/with respect
to the Cartesian coordinate y (second ADI sweep only.) I is
the grid index in the sweep direction, running from 1 to N.
IV is the grid index in the "vectorized" direction (i.e., the
non-sweep direction in which the "BLK" routines are
vectorized), and runs from 2 to ;V_ - 1. This is a type REAL
variable. (METRIC1)

Computational grid spacing in the _t direction (second ADI
sweep only.) (NUMI)

Computational grid spacing in the ,_ direction. (NUMI)

Von Karman mixing length constant used in the inner region
of the Baldwin-Lomax and Spalding-Kleinstein turbulence
models. (TURB1)

User-specified constant in nonlinear coefficient artificial

viscosity model. The subscript I = 1 to N,q, corresponding to
the N,q coupled governing equations. (N UM 1)

User-specified constant in nonlinear coefficient artificial

viscosity model. The subscript I = 1 to N,q, corresponding to
the N,q coupled governing equations. (NUM 1)

Reference ratio of specific heats, %/%. (FLOW1)

Effective second coefficient of viscosity at time level n (usually
assumed equal to -2#/3.) This is a type REAL variable.
(FLOWI)

Effective viscosity coefficient at time level n. This is a type
REAL variable. (FLOWI)

Dimensional reference viscosity coefficient. This is a type
REAL variable. (FI_OW1)

Turbulent viscosity coefficient at time level n. This is a type
REAL variable. (FLOWI)

The derivative of the computational coordinate _ with respect
to the cylindrical coordinate r. (METRIC1)

The derivative of the computational coordinate _ with respect
to the cylindrical coordinate r (first ADI sweep only.) I is the
grid index in the sweep direction, running from 1 to N. IV is
the grid index in the "vectorized" direction (i.e., the non-sweep
direction in which the "BLK" routines are vectorized), and

40 Variables Listed Symbolically PROTEUS 2-D Programmer's Manual

,L XIT(II,12)

Mt!TT(IV,I)_r

XIX(II,12)

MI!TX(IV,I)

_y XIY(II,12)

_3, MIiTY(IV,I)

A_ I)1{1

A_ l)X1

p P,IIO(I 1,12)

p RIiOL(II,I2)

p, RIIOR

-r TAU(I 1,12)

A'r DTAU(I 1,I2)

0"_, TIIMAX

* 0",_ TIIMIN

runs from 2 to ,V--1. This is a type RFAI, variable.
(MI!TRIC1)

The derivative of the computational coordinate _ wifll respect
to untranstonncd time t. (Mt;TRICI)

The derivative of the computational coordinate _ with respect
to untransl_rmcd time l (fir.,,t AI)I sweep only.) 1 is the grid
index in the :_vcep direction, running from t to V. ix,, is the
grid index in the "vcctorizcd" dircclion (i.e., the norl-swecp
direction ira _hich the "BI.K" roulincs arc vectorizcd), and
runs from 2 to :V- 1. This is a t>pc l(l{:\l variable.

• ,) •(MI'. 1 I\I(.I)

1he dcnvativc of the computational coordinate _ wifla respect
to the Carl_'>imacoordinatcx. (MI';IRIUI)

The derivative of the compulalional coordinate _ with respect
to the (?artc>ian coordin_tc x (lhst AI)[sweep only.) [is the
grid index in the sweep direction, running from 1 to X. IV is
the grid index in the "vcctorized" dircction (i.e., the non-sweep
direction in which the "BI K" routines arc vcctorizcd), and
runs from 2 to _\7_- 1. •Ibis is a type REAl. variable.
(MI_IRICI)

The derivative of the computational coordinate :,"with respect
to the (Tartcsian coorttinatc y. (. II-11,,I(1)

The derivative of tile comput:tlional coordinate _ with respect
to the Cartesian coordirmte y (first AI)I sweep only.) I is the
grid index in the sweep direction, running from 1 to N. IV is
the grid index ira thc "vcctorizcd" dircclion (i.e., the non-sweep
direction ira xvhich the "BI K" roulincs :arc vcctorized), and
runs from 2 to ,\r_--1. lhis is a type RliAI, variable.
(MIiTRI(?I)

(7omputational grid spacing in the _ direction (first AI)I
sweep only.) (NL'MI)

Computational _-id spacing in the _ direction. (NI.M 1)

Static density at time level n. (I:IL)\V1)

Static density at previous or intermediate time level.
(FI O\V t)

Dimensional reference density. (FI OWl)

Current value of tile time marching parameter. (TIMt;1)

Computational time step size. ('IIM[:.I)

Maximum 0' coordinate in dcgrecs for polar grid option.
(GMTRY1)

Minimum 0' coordinate in degrees for polar grid option.
(GMTRYI)

I'ROTE[;S 2-1) Programmer's Manual Variables Listed Symbolically 41

* 0,, 02 TIIC(I)

* Ol, 02, 03 TIlE(I)

* 0,, 02, 03 THX(I)

* Ol, 02, 03 "I'tlY(I)

* Ol, 02, 03 THZ(I)

Ifil VORT(II,12)

A two-element array specifying the time difference centering
parameters used for the continuity equation. (NUM 1)

A three-element array spec_,ing the time difference centering
parameters used for the energy equation. (N UM 1)

A three-element array specifying the time difference centering
parameters used for the x-momentum equation. (NUM 1)

A three-element array specifying the time difference centering
parameters used for the y or r-momentum equation. (NUM 1)

A three-element array specifying the time difference centering
parameters used for the swirl momentum equation. (NUM 1)

Total vorticity magnitude. (TURBI)

3.4 COMMON VARIABLES LISTED BY COMMON BLOCK

In this section all the PROTEUS Fortran variables stored in common blocks are defined, with each

block listed separately. Within each block, the variables are listed alphabetically. Those marked with an
asterisk are input variables. More details on these variables may be found in Section 3.1 of Volume 2. For
subscripted variables, the subscripts are defined along with the variable, except for the subscripts I 1 and I2,
which are the indices i and k in the ¢ and Pl directions, respectively, and run from 1 to N_ and N2.

Unless otherwise noted, all variablcs representing physical quantities are nondimensional. The
nondimcnsionalizing procedure is described in Scction 3.1.1 of Volume 2. The type (real or integer) of the
variables follows standard Fortran convention, unless stated otherwise. (I.e., those starting with I, J, K,

L, M, or N are integer, and the remainder are real.)

Common Block BCI

This common block contains variables dealing with the application of boundary conditions.

Fortran

Variable S_mbol Definition

* FBCI(I2,I,J) Point-by-point valucs used for steady boundary conditions on
the ¢ = 0 and _ = 1 surfaces. These are either set in the input,

if a point-by-point distribution is being specified by the user,
or by the program itseff. I runs from 1 to N,q, corresponding
to the N,q conditions needed, and J = 1 or 2, corresponding
to the _ = 0 and _: = 1 boundaries, respectively.

* FBC2(I 1,I,J) Point-by-point values used for steady boundary conditions on
the _l = 0 and r/= 1 surfaces. These are either set in the input,

if a point-by-point distribution is being specified by the user,
or by the program itself. I runs from 1 to N,q, corresponding

to the :V,q conditions needed, and J = 1 or 2, corresponding
to the r/= 0

* GBCI(I,J) Values used for steady boundary conditions on the _ = 0 and
= 1 boundaries, when specified for the entire surface. I runs

from 1 to N,q, corresponding to the _q conditions needed, and
J = 1 or 2, corresponding to the ¢ = 0 and ¢ = 1 boundaries,
respectively.

42 Variables Listed Symbolically PROTEUS 2-D Programmer's Manual

* GBC2(I,J)

* GTBCI(K,I,J)

* GTBC2(K,I,J)

IBCEIM(I,J)

* IBCI(12,I,J)

* IBC2(I1,I,J)

IBVUI'(I)

Valuesusedfor steadyboundaryconditionson the _/= 0 and
_/= 1 boundaries, when specified for the entire surface. I runs

from 1 to N,q, corresponding to the N,q conditions needed, and
J = 1 or 2, corresponding to the y/= 0 and q = 1 boundaries,
respectively.

A variable used to specify the values for unsteady and time-
periodic boundary conditions on the ¢ = 0 and ¢ = 1 bound-

aries. I runs from 1 to N,q, corresponding to the N,q
conditions needed, and J = 1 or 2, corresponding to the ¢ = 0
and _ = 1 boundaries, respectively. For general unsteady
boundary conditions, K = 1 to NTBC, corresponding to the
time levels in the array NTBCA, and GTBCI specifies the
boundary condition value directly. For time-periodic bound-
ary conditions, K = 1 to 4, and GTBC 1 specifies the four co-
efficients in the equation used to determine the boundary"
condition value.

A variable used to specify the values for unsteady and time-
periodic boundary conditions on the q = 0 and _, = 1 bound-

aries. I runs from 1 to N,q, corresponding to the N,q
conditions needed, and J = 1 or 2, corresponding to the _/= 0
and _/= 1 boundaries, respectively. For general unsteady
boundary conditions, K = 1 to NTBC, corresponding to the
time levels in the array NTBCA, and GTBC2 specifies the
boundary condition value directly. For time-periodic bound-
ary conditions, K = 1 to 4, and GTBC2 specifies the four co-
efficients in the equation used to determine the boundary
condition value.

Flags for elimination of off-diagonal sub-matrices resulting
from gradient or extrapolation boundary conditions: 0 if
elimination is not necessary, 1 if it is. The subscript I = 1 or

2 corresponding to the sweep direction, and J = 1 or 2 corre-
sponding to the lower or upper boundary in that direction.

Flags specifying, point-by-point, the type of steady boundary
conditions used on the _ = 0 and _ = 1 surfaces. These are
either set in the input, if a point-by-point distribution is
specified by the user, or by the program itself. I runs from 1

to N_q, corresponding to the N,q conditions needed, and J = 1
or 2, corresponding to the ¢ = 0 and _ = 1 boundaries, re-
spectively.

Flags specifying, point-by-point, the type of steady boundao'
conditions used on the _/= 0 and _ = 1 surfaces. These are
either set in the input, if a point-by-point distribution is

specified by the user, or by the program itself. I runs from 1

to N_q, corresponding to the N,q conditions needed, and J = 1
or 2, corresponding to the t/= 0 and _/= 1 boundaries, re-

spectively.

Flags for updating boundary values from the first sweep after
the last sweep: 0 if updating is not necessary, 1 if it is. Up-

dating is required when gradient or extrapolation boundary
conditions are used. The subscript I = 1 or 2, corresponding

to the lower or upper boundary' in the first sweep direction.

PROTEUS 2-D Programmer's Reference Variables Listed by Block 43

I1I)13C Flag for time-dependent boundary condition_; 0 if all bound-

ary conditions are steady, 1 if any, general unsteady boundary
conditions are used, 2 if only steady and time-periodic
boundary. conditions are used.

* .IBC l(l,J) Flags specit_ing the type of steady bounda U conditions used
on the ,_ = 0 and { = 1 surfaces, when specified tbr the entire

surface. I runs from 1 to "\',v, corresponding to the \'._ con-
ditions needed and .I = 1 or ,.,"_correspe_Ming to the _" : [3:rod

= 1 bo mdarics, rcspectively.

* J B('2(I ;) l:lags speci(\ing the type of steady boundar_ condition; used
on the _1= 0 and _1= 1 surtaces, when specified tot the entire
surface. I runs from t to :\,.r corresponding to _he \ con-
ditions needcd, and J = 1 or 2, concsponding to the Jl = !! :,.,id
J! - 1 boundaries, rcspectivcly.

* JTIIC l(l.J) A variable spccif.,,ing thc type of timc dci,cmlcnc_ k, tbv
boundary conditions on the _ {I and _ = 1 boundaric..,. I

runs from 1 to N_v , corresponding to lhe ,\' comlitions
needed, and J= I or._,"_ corresponding tothe _=0and _= 1
boundaries, respectively.

* J'IBC2(I,J) A variable specifying the type of time dependcncy for the
boundar? _ conditions on the _1= () and _1- 1 boundaries. 1

runs from 1 to :\', corresponding to lhe :V_ conditions
nccded, and J = 1 or 2, corresponding to the _1= !) and _1 -: t
boundaries, respectively.

KI_(_'PI(IZ(I) l:lags for spatially periodic boundary conditions: fl for _,on-

periodic, 1 for periodic. The subscript I = 1 or 2, conc-
sponding to the { and _l directions, rcspectivcly.

* KB(;I(,I) Flags for type of boundaries in the _ direction. 'l'hc subscript
J = 1 or 2, corresponding to the _ = () and ,_= 1 boundaries,
respectively.

* KIIC2(.I) Flags for type of boundaries in the '/direction. The subscript
J = 1 or 2, corresponding to the _1= 0 and _1= 1 boundm-ics,
respectively.

* NTBC Number of values in the tables of G'IBC 1 and 'or GTI_C2 vs.

NTBCA lbr general unsteady boundary conditions.

* NTBCA(I) Time levels at which GTBCI and..or GTBC2 are specified for
general unsteady boundaly conditions. The subscript I = 1 to
NTBC, corresponding to the NI'BC values in the table.

Common Block DUMMYI

This common block contains a variable used for tempormy scratch storage in several subroutines.

Fortran

Variable Symbol Definition

DUMMY(I 1,I2) Dummy array used for temporary, storage in several subrou-
tints.

44 Variables Listed by Block PROTEUS 2-D Programmer's Reference

Common Block FLOW1

This common block contains variables dealing with the flow being computed, and with the basic prop-
erties of the fluid. Several of the two-dimensional variables are equivalenced to corresponding one-
dimensional variables. The names of the one-dimensional variables were created by adding a "1" to the

name of the corresponding two-dimensional variable (e.g., ET and ET1, P and P1, etc.) Using the variables
IBASE and ISTEP (see common block NL'M1), a one-dimensional indexing scheme can thus be used to
access a particular location in a two-dimensional array. This is useful, in the COEF routines for example,
because it allows the same coding to be used for both sweeps.

Fortran
Variable Symbol Definition

CCPI-4 C_pt- Gp4 Constants in empirical formula for specific heat as a function
of temperature.

CK1-2 Gl" C_2 Constants in empirical formula for thermal conductMty coef-
ficient as a function of temperature.

CMUI-2 Gl" (7.2 Constants in empirical formula for laminar viscosity coeffi-
cient as a function of temperature.

CP(II,I2) G Specific heat at constant pressure at time level n.

CV(II,I2) c, Specific heat at constant volume at time level n.

DPDET(I) Op/aEr The derivative of p
dimensional array in
therefore runs from 1

with respect to Er, stored as a one-
the sweep direction. The subscript I
to N.

DPDRHO(I) @lOp The derivative of p with respect to p,
dimensional array in the sweep direction.
therefore runs from 1 to N.

stored as a one-

The subscript I

DPDRU(I) Op/O(pu) The derivative of p
dimensional array in
therefore runs from 1

with respect to pu, stored as a one-
the sweep direction. The subscript I
to N.

DPDRV(I) Op/O(pv) The derivative of p
dimensional array in
therefore runs from 1

with respect to pv, stored as a one-
the sweep direction. The subscript I

to N.

DPDRW(I) Op]a(pw) The derivative of p
dimensional array in
therefore runs from 1

with respect to pw, stored as a one-
the sweep direction. The subscript I
to N.

DTDET(I) OT]OEr The derivative of T

dimensional array in
therefore runs from 1

with respect to E r, stored as a one-
the sweep direction. The subscript I
to N.

DTDRHO(I) aT/Op The derivative of T

dimensional array in
therefore runs from 1

with respect to p,
the sweep direction.

to N.

stored as a one-

The subscript 1

DTDRU(I) OT]O(pu) The derivative of T

dimensional array in
therefore runs from 1

with respect to pu, stored as a one-
the sweep direction. The subscript I
to N.

PROTEUS 2-D Programmer's Reference Variables Listed by Block 45

I)TI)RV(I)

DTDRW(1)

F,R

EI(I 1,12)

F,TI ,(I1,I2)

GAMR

GC

tlSTAG

* tlSTAGR

* ICVARS

* IEULER

IGAM

* IHSTAG

* ILAMV

INEG

* ISWIRL

* ITHIN(I)

KT(II,12)

* KTR

aTIO(pv)

OT/O(ow)

e_

Er

Er

?,

g<

h T

hz7

The derivative of 7" with respect to pv, stored as a one-
dimensional array in the sweep direction. The subscript l
theretbre runs from 1 to .V.

The derivative of T with respect to pw, stored as a one-
dimensional array in the swecp direction. The subscript I
therefore runs from 1 to N.

Dimensional reference energy, p,uT.

Total cnergy at time level n.

Total energy at previous or intermediate time level.

Reference ratio of specific heats, G,/c_.

Dimensional proportionality factor in Ne_ton's second law,
either 32.174 Ibm-ft/lb:sec 2, or 1.0 kg-m/N-secL

Stagnation enthalpy used with constant stagnation enthalpy
option.

Dimensional stagnation enthalpy used with constant stag-
nation enthalpy option.

Parameter specifying which variables are being supplied as
initial conditions by subroutine INIT.

Flag for Euler calculation option; 0 for a full time-averaged
Navier-Stokes calculation, 1 for an Euler calculation.

Flag set by method used to select GAMR; 0 if GAMR is de-
faulted (and hence cp and c_ are functions of temperature), 1
if GAMR is specified by user (and hence G and cv are con-
stants).

Flag for constant stagnation enthalpy option; 0 to solve the
energy equation, 1 to eliminate the energy equation by as-
suming constant stagnation enthalpy.

Flag for computation of laminar viscosity and thermal
conductivity; 0 for constant values, 1 for functions of local
temperature.

Flag indicating non-positive values of pressure and/or tem-
perature: 0 for no non-positive values, 1 for some.

Flag for swirl in axisymmetric flow; 0 for no swirl, 1 for swirl.

Flags for thin-layer option; 0 to include 2nd. derivative
viscous terms, 1 to eliminate them. The subscript I = 1 or 2,
corresponding to the { and _7directions, respectively.

Effective thermal conductivity coefficient at time level n. This
is a type REAL variable.

Reference thermal conductivity coefficient. This is a type
REAL variable.

46 Variables Listed by Block PROTEUS 2-D Programmer's Reference

LA(II,I2)

* LR L,

* MACtlR 3L

MU(I 1,12)

* MUR #,

MUT(II,12) #r

P(II,I2) p

PR p,

PRI,R Pr:,

PRR Pr,

* RER Re,

* RG R

RGAS R

RHO(II,12) p

RHOL(I 1,I2) p

* RHOR p,

T(II,I2) T

TL(II,12) T

* TR 7",

U(II,I2) u

UL(II,I2) u

* UR u,

V(II,I2) v

VL(I 1,I2) v

W(II,I2) w

Effective second coefficient of viscosity at time level n (usually
assumed equal to - 2_/3.) This is a type REAL variable.

Dimensional reference length. This is a type REAL variable.

Reference Mach number, u,](y,RT,) 12. This is a type REAl,
variable.

Effective viscosity coefficient at time level n. This is a type
REAL variable.

Dimensional reference viscosity coefficient. This is a type
REAL variable.

Turbulent viscosity coefficient at time level n. This is a type
REAL variable.

Static pressure at time level n.

Dimensional reference static pressure, p,R Y,/g¢.

Reference laminar Prandtl number, G,_/k,, where
c,, = y,R/(>,, - 1).

Rcference Prandtl number, _,u_/k,T,.

Reference Reynolds number, p,u,L,/#,.

Dimensional gas constant.

Nondimensional gas constant.

Static density at time level n.

Static density at previous or intermediate time level.

Dimensional reference density.

Static temperature at time level n.

Static temperature at previous or intermediate time level.

Dimensional reference temperature.

Velocity in the Cartesian x direction at time level n.

Velocity in the Cartesian x direction at previous or interme-
diate time level.

Dimensional reference velocity.

Velocity in the Cartesian y direction or cylindrical r direction
at time level n.

Velocity in the Cartesian y direction or cylindrical r direction
at previous or intermediate time level.

Swift velocity at time level n.

PROTEUS 2-D Programmer's Reference Variables Listed by Block 47

WL(II,I2) w Swirl velocity at previous or intermediate time level.

Common Block GMTRY1

This common block contains variables used to determine the geometric configuration being analyzed.

l'oi3.ran

Variable Symbol

* IAXI

IGIST([)

* NGEOM

* R MAX r',_o,

* RMIN Y,_,,

* TIIMAX 0',,_

* TtlMIN 0",,,

* XMAX x_.o_

* X M I N x.._

* YMAX)',,,x or r,,_

* YMIN y_,. or r_,.

Definition

Flag for two-dimensional planar or axisymmetric flow; 0 for
two-dimensional planar, 1 for axisymmetric.

Flags for grid interpolation requirement; 0 if interpolation is
not needed, 1 if interpolation is needed. The subscript I = 1
to 3, corresponding to the _, rt, and _ directions, respectively.

Flag used to specify type of computational coordinates; 1 for
Cartesian (x,y) coordinates, 2 for polar (r',0') coordinates, and
10 to read the coordinates from unit NGRID.

Maximum r' coordinate for polar grid option.

Minimum r' coordinate for polar grid option.

Maximum 0' coordinate in degrees for polar grid option.

Minimum O' coordinate in degrees for polar grid option.

Maximum x coordinate for Cartesian grid option.

Minimum x coordinate for Cartesian grid option.

Maximum y or r coordinate for Cartesian or cylindrical grid
option.

Minimum y or r coordinate for Cartesian or cylindrical grid
option.

Common Block ICI

This common block contains variables used in setting up the initial conditions in subroutine INIT. For
the version of INIT supplied with PROTEUS, these variables specify the properties of an initial uniform
flow field. It is anticipated that, for user-supplied versions of subroutine INIT, the user will need to change
the contents of this common block and of namclist IC.

Fortran

Variable Symbol

* PO Po

* TO To

* UO uo

* VO vo

* WO w0

Definition

Initial static pressure.

Initial static temperature.

Initial velocity in the Cartesian x direction.

Initial velocity in the Cartesian y direction or cylindrical r di-
rection.

Initial swirl velocity.

48 Variables Listed by Block PROTEUS 2-D Programmer's Reference

Common Block I01

This common block contains variables dealing with input'output requirements.

Fortran
Variable Symbol Definition

* IDEBUG(I) A 20-element array of flags specifying various debug options.

* IPLOT Flag controlling the creation of an au.,dliary fde, usually called
a "plot fde", used for later post-processing.

* IPLT Results are written into the plot fde every IPLT time levels.

* IPLTA(I) Time levels at which results are written into the plot fde. The
subscript I = 1 to 101, the maximum number of time levels
that may be written.

* IPRT Results are printed every IPRT time levels.

* IPRTA(I) Time levels at which results are printed. The subscript I = 1
to 101, the maximum number of time levels that may be

printed.

* IPR'F1 Results are printed at every IPRTI'th mesh point in the
direction.

* IPRT2 Results are printed at every lPRT2'th mesh point in the rt
direction.

* II'RTIA(1) indices at which results are printed. The subscript I = 1 to
a maximum of N 1, the number of grid points in the _ direc-
tion.

* II'RT2A(1) indices at which results are printed. The subscript I = 1 to
a maximum of N2, the number of grid points in the _ direc-
tion.

* IUNITS Flag for type of units used to specify reference conditions;
0 for English units, 1 for SI units.

* IVOUT(1) A 50-element array specifying which variables are to be
printed.

* NGRID Unit number for reading grid file.

* NIIIST Unit number for writing convergence history file.

* NIIMAX Ma_mum number of time levels allowed in the printout of
the convergence history' file (not counting the first two, which
arc ahvays printed.)

NIN Unit number for reading namelist input.

* NOUT Unit number for writing standard output.

* N PI.OI" Unit number for writing CONTOUR or PLOT3D Q plot file.

PRO'FEES 2-D Programmer's Reference Variables Listed by Block 49

NP[()['X [.'nit number for writing PIDT3D XYZ plot file.

Nt'RII Total number of indices for printout in the _ direction.

", Pi,'. t 2 Tokd number of indices for printout in tile P/direction.

I hilt number for scratch file in subroutine 17I,OT.

(m-'._v_ _:',.<!, \11.: IRI('!

t _1- __ +_tr++,,:_block contains the ntctric coefficients and inverse Jacobian describing the nonorthogonal
,,:Gd traT_ I_ _:n._'ion, plu_ the Cat'lc..,ian coordinates of each grid point. The two-dimcnsionaI variables in
li;i-_ cotnt_._, _ hk+ck are uquivalenccd to cotxesponding one-dimensional variables. This is done for thu same
'+.;: :tnY, i_1 +}!c' _:unc maimer a:, described previously for several variables in common block I:1 ()WI.

! :(.H[I:tl i

\+atJar ,Iv S x t.nbot l)etinition

I: I'A'I)I 1,12) _1_ The derivative of the computational coordinate v/with respect
to untransfl)rnaed time t.

i!IAX(11 I2) _/_ The derivative of the computational coordinate +l with respect
to the Cartesian coordinate x.

l':rl':\V([1 12) _1_or _t, The derivative of the computational coordinate r/with respect
to the Cartesian coordinate y or cylindrical coordinate r.

Jl(ll,12) J t orP:/ t Normally the inverse Jacobian of the non-orlhogonal grid
transformation. For the COEF routines in a:dsymmctric
flow, it is temporarily redefined as the product of the local
radius and the inverse Jacobian. This is a type RI!AI, vari-
able.

MI:I"I(I\'.l) +, or 'h The derivative of the computational coordinate in the AI)I
sweep direction with respect to untransformcd time t. 1 is the
grid index in the sweep direction, running from 1 to N. IV is
tim grid index in the "vectorizcd" direction (i.e., the non-sweep
direction in which the "BI,K" routines are vcctorized), and
runs from 2 to N_ - 1. This is a type REAL variable.

MITI'XCIV,I) +, or r/, The derivative of the computationM coordinate in the AI)I
sweep direction with respect to the Cartesian coordinate x. I
is the grid index in the sweep direction, rmming from 1 to N.
IV is the .grid index in the "vectoriz.ed" direction (i.e., the
non-sweep direction in which the "BI+K" routines are
vectonzed), and runs from 2 to N_ - 1. This is a type REAL
variable.

MFTI'Y(IV I) _ ory l?y The derivative of the computational coordinate in the ADI
sweep direction with respect to the Cartesian coordinate .I' or
cylindrical coordinate r. I is the grid index in the sweep di-
rection, running from 1 to N, IV is the grid index in the
"vectorized" direction (i.e., the non-sweep direction in which
the "BLK" routines are vectorized), and runs from 2 to
N, - 1. This is a type REAL variable.

RAN(I) 1 or r 1 for two-dimensional planar flow, and the local radius r for
a:dsymmetric flow. I is the grid index in the sweep direction,
running from 1 to N.

51_ Variables I.isled by Block PROTEUS 2-D Programmer's Reference

X(l 1,I2) x Cartesian x coordinate.

XIT(II,I2) {, The derivative of the computational coordinate { with respect
to untransformed time t.

XIX(II,I2) _ The derivative of the computational coordinate { with respect
to the Cartesian coordinate x.

XIY(II,I2) _y or _, The derivative of the computational coordinate _ with respect
to the (2artesian coordinate y or cylindrical coordinate r.

Y(II,12) y or r Cartesian), cooMinate or cylindrical r coordinate.

Common Block NUMI

This common block contains variables dealing with various aspects of the numerical method used to
solve the equations.

l;ortran

Variable S_ymbol Definition

A(IV,I,J,K) A Subdiagonal submatrix of coefficients at grid point I in the
block tridiagonal coefficient matrix. I is the grid index in the
sweep direction, running from 1 to N. IV is the grid index in
the %'cctorized" direction (i.e., the non-sweep direction in
which the "BI.K" routines are vectorized), and runs from 2 to

N, - 1. The subscript J = 1 to N,q, corresponding to the N,q
coupled governing equations, and K = 1 to N,q, corresponding
to the .N,q dependent variables.

ALPIIA c_ Difference centering parameter for first derivatives in the ADI
sweep direction.

* ALPtlAI a t Difference centering parameter for { direction first derivatives.
AIJHIA1 = 0.0, 0.5, or 1.0 corresponding to forward, central,
and backward differences, respectively.

* ALPI IA2 a2 Difference centering parameter for q direction first derivatives.
ALPI |A2 = 0.0, 0.5, or 1.0 corresponding to forward, central,
and backward differences, respectively.

B(IV,Ij,K) B Diagonal submatrix of coefficients at grid point I in the block
tridiagonal coefficient matrix. I is the grid index in the sweep
direction, running from I to N. IV is the grid index in the
"vectorized" direction (i.e., the non-sweep direction in which
the "BIK" routines are vectorized), and runs from 2 to
N,- 1. The subscript J = 1 to N_q, corresponding to the N,¢
coupled governing equations, and K = 1 to N,q, corresponding
to the N,v dependent variables.

C(IV,IJ,K) C Superdiagonal submatrix of coefficients at grid point I in the
block tridiagonal coefficient matrix. I is the grid index in the
sweep direction, running from 1 to N. IV is the grid index in
the "vectorized" direction (i.e., the non-sweep direction in
which the "BLK" routines are vectorized), and runs from 2 to

N,- 1. The subscript J = 1 to N,v corresponding to the N,q
coupled governing equations, and K = 1 to N,o, corresponding
to the N,v dependent variables.

PROTEUS 2-D Programmer's Reference Variables Listed by Block 51

* CAVS2E(I) g_) or K 2

* CAVS2I(I) £t

* CAVS4E(I) _) or K4

I)EI.

DETA

DXI

IAV2E

A{ or A_t

A_

A¢

* IAV2I

* IAV4E

IBASE

* IPACK(I)

ISTEP

ISWEEP

IV

I1

12

NC

YEN

Second-order explicit artificial viscosity coefficient in constant
coefficient model, or user-specified constant in nonlinear co-
efficient model. The subscript I = 1 to N,v, corresponding to
the A',q coupled governing equations.

Second-order implicit artificial viscosity coefficient in constant

coefficient model. The subscript I = 1 to N,, corresponding
to the Nev coupled governing equations.

Fourth-order explicit artificial viscosity coefficient in constant
coefficient model, or user-specified constant in nonlinear co-

efficient model. The subscript 1 = 1 to ,\:,q, corresponding to
the :V,qcoupled governing equations.

Computational grid spacing in the ADI sweep direction.

Computational grid spacing in the r/direction.

Computational grid spacing in the ¢ direction.

Flag for second-order explicit artificial viscosity; 0 for none, 1
for constant coefficient model, 2 for nonlinear coefficient
model.

Flag for second-order implicit artificial viscosity; 0 for none,
1 for constant coefficient model.

Flag for fourth-order explicit artificial viscosity; 0 for none, 1
for constant coefficient model, 2 for nonlinear coefficient
model.

Base index used with ISTEP to compute one-dimensional

index for two-dimensional array. Then, for example, for any
sweep U(II,I2) = UI(IBASE + ISTEP*(I - 1)) where I is the
grid index in the sweep direction.

Flags for grid packing option; 0 for no packing, I to pack
points as specified by the input array SQ. The subscript
I = 1 or 2, corresponding to the ¢ and r/ directions, respec-
tively.

Multiplication factor used with IBASE to compute one-
dimensional index for two-dimensional array.

Flag specifying ADI sweep direction; 1 for ¢ direction, 2 for
direction.

Grid point index in the "vectorized" direction (i.e., the non-
sweep direction in which the "BLK" routines are vectorized).
Therefore, IV---j for the first sweep and i for the second

sweep.

Grid point index in the _ direction.

Grid point index in the r/direction.

Array index associated with the continuity equation,

Array index associated with the energy equation.

52 Variables Listed by Block PROTEUS 2-D Programmer's Reference

NEQ

NET

NPTS

NPTI

NPT2

NR

NRU

NRV

NRW

NV

/Yeq

N2 or N2 + 1

&

NXM

NYM

NZM

* N1 N t

* N2 N 2

s([v,i,J) s

* SQ0,J)

* THC(I) 01, 02

* TIlE(I) 01, 02, 03

The number of coupled governing equations actually being
solved.

Array index associated with the dependent variable E r.

The number of grid points in the sweep direction.

The number of grid points in the _ direction used in com-
puting coefficients: N_ for non-periodic boundary conditions;
N 1+ 1 for spatially periodic boundary conditions.

The number of grid points in the rl direction used in com-
puting coefficients: N 2 for non-periodic boundary conditions;
)4 + 1 for spatially periodic boundary conditions.

Array index associated with the dependent variable p.

Array index associated with the dependent variable pu.

Array index associated with the dependent variable pv.

Array index associated with the dependent variable pw.

The number of grid points in the "vectorized" direction (i.e.,
the non-sweep direction in which the "BLK" routines are
vectorized). Therefore, NV = N2 for the first sweep and N_ for
the second sweep.

Array index associated with the x-momentum equation.

Array index associated with the y or r-momentum equation.

Array index associated with the swirl momentum equation.

The number of grid points in the _ direction.

The number of grid points in the 1,/direction.

Subvector of source terms at grid point I in the block
tridiagonal system of equations. I is the grid index in the
sweep direction, running from 1 to N. IV is the grid index in
the "vectorized" direction (i.e., the non-sweep direction in
which the "BLK" routines are vectorized), and runs from 2 to

N,- 1.]'he subscript J = 1 to N,q, corresponding to the N,e
coupled governing equations.

An array controlling the packing of grid points using the
Roberts transformation. The subscript I--1 or 2, corre-
sponding to the _ and _/ directions, respectively. SQ(I,1)

specifies the location of packing, and SQ(I,2) specifies the
amount of packing.

A two-element array specifying the time difference centering
parameters used for the continuity equation.

A three-element array specifying the time difference centering
parameters used for the energy equation.

PROTEUS 2-D Programmer's Reference Variables Listed by Block 53

* TIIX(1) 0_, 0 2, 0 s iX three-element array specifying the time difference centering
parameters used for the x-momentum equation.

* TttY(I) Of, 02, 03 A three-element array specifying the time difference centering
parameters used for the y or r-momentum equation.

* TIlZ(I) 0_, 02 , 03 A three-element array specifying the time difference centering
parameters used for the swirl momentum equation.

Common Block RSTRTI

This common block contains variables controlling the use of the restart option.

Fortran

Variable Symbol Definition

* IREST Flag controlling the reading and writing of au,,dliary files used
for restarting the calculation in a separate run.

* NRQIN Unit number for reading restart flow field.

* NRQOUT Unit numbcr for writing restart flow field.

* NRXIN Unit number for reading restart computational mesh.

* NRXOUT [:nit number for writing restart computational mesh.

Common Block TIME!

This common block contains variables dealing with time step selection and convergence determination.
The two-dimensional array DTAU is equivalenced to a corresponding one-dimensional array DTAU1, as
described previously for variables in common blocks FI,OWI and METRIC1.

Fortran

Variable Symbol Definition

* CFL(I) The ratio Ar/Arc:¢ where Ar is the actual time step used in the
implicit calculation and Arc/: is the allowable time step based
on the Courant-Fricdrichs-Lewy (CFL) criterion for explicit
methods. I is the time step sequence number, and runs from
1 to N'I'SEQ.

* CFLMAX Maximum allowed value of the CFL number.

* CFLMIN Minimum allowed value of the CFL number.

CtlGAVG(I) AQo_, Maximum change in absolute value of the dependent vari-
ables, averaged over the last NITAVG time steps: The sub-
script I = 1 to A_v corresponding to the N,q dependent
variables.

CttGMAX(I,J) AQ,,,_ Maximum change in absolute value of the dependent variables
over a sin_e time step: The subscript I = 1 to N,v corre-

sponding to the A:,q dependent variables, and J = 1 to

s For the energy equation, the change in E r is divided by Err = p,-RT,/(y, - 1) + u2,12, so that it is the same order
of magnitude as the other conservation variables.

54 Variables Listed by Block PROTEUS 2-D Programmer's Reference

* CI IG I

_ CtlG2

* DT(I)

I)TAL(I 1.12)

I)TFI

I)TF2

I)I'MAX

I)I'\IIN

I'iPS(I)

ICIIt_CK

ICONV

ICTt.;ST

I D TA U

IDTMOD

IT

ITBI3G

II't_ND

IIStiQ

I.P, MAX(I,.I,K)

NI)ICYC

Al

AT

NI'I'AVG, the number of time steps used in the moving av-
erage option for determining convergence.

Minimum change, in absolute value, that is allowed in any
dependent variable before increasing lhe time step. s

Maximum change, in absolute value, that is allowed in ;m\
dependent variable before decreasing the lime step. 3

The time step size, when specified directlx as input. I is the
time step sequence number, and runs t'rom I to NISI:Q.

Computational time step size.

Factor by which the lime step is multiplied if the solulivm
changes too slowly.

Factor by which the time MOp is divided if the %(.)lit{it,i..
changes too quickl}.

Maximum value that Az is allowed 1o reach, or the _,;txi_titt_
Ar used in the time step cycling procedure,

Minimum value that Ar is allowed to reach, or Ilk' minim_,.
A'r used in the time step cycling procedure.

Convergence level to be reached.]'he subscript 1 :: I t(> \..
corresponding to the N. v dependent variables.

Results are checked for convergence eyeD' 1CllliCK'th mnc
level.

Convergence flag; 0 if not converged, 1 if convel-gcd.

Flag for convergence criteria to be used.

Flag for time step selection method.

The time step size is modified eyeD, ll)TMOl)'th time step.

Current time step number, or known time level. Time .qcp
number n updates the solution from time level n to n + I.

The time time step number, or known time level n, at the
beginning of a run. For a non-restart case, ITBli(} = 1.

The final time step number.

Currcnt time step sequence numbcr.

The grid indices corresponding to the location of the maxi-
mum absolute value of the residual. The subscript 1 = 1 m
2, corresponding to the _ and tl directions, respectively, .1 -- 1
to 3,",v corresponding to the _\;¢¢coupled governing cqualions.
and K = 1 or 2, corresponding to the residual computed
without and with the artificial viscosity tcrms.

Number of time steps per cycle used in the time step cycling
procedure.

I)R()'I'EITS 2-I) Programmer's Reference Variables Listed by Block 55

* N fL-'\VG Number of time steps used in the moving average convergence
test.

* NTIMF.(I) Maximum number of time steps to march. I runs from 1 to
N'fSEQP, corresponding to the time step sequence number.

NfSgO

RESAVG(J,K) Ro_s

The total number of time step sequences being used.
_t

The average absolute value of the residu:d for the previous

time step. The subscript J = 1 to _.\',q, corresponding to the
,\"_e coupled governing equations, and K = 1 or 2, corre-
sponding to the residual computed without and with the arti-
ficial viscosity terms.

RESI.2(J,K) Re2 The 1._ norm of the residual for the previous time step. The
subscript J - I to ,.V,_, corresponding to the N,q coupled gov-
erning equations, an_ K = 1 or 2, corresponding to the resi-
dual computed without and with the artificial viscosity terms.

RI!SMAX(J,K) R_ The maximum absolutc value of the residual for the previous

time step. The subscript J = 1 to N_q, corresponding to the
:V,q coupled governing equations, and K = 1 or 2, corre-'
sponding to the residual computed without and with the arti-
ficial viscosity terms.

TAU(I 1,I2) r Current value of the time marching parameter.

Common Block TITI.EI

This common block contains a descriptive lille for the case being run.

Fortran

Vari____abl__ee S_!_mbol Definition

* TITLE Title for printed output and CONTOUR plot file, up to 72
characters long. This is a type CI IARACTER ",'affable.

Common Block TURBI

Tiffs common block contains turbulence model constants, plus flags and parameters used for turbulent
flow calculations.

Fortran

Variable Symbol Definition

* API_L'S A " Van Driest damping constant in the inner and outer regions
of the Baldwin-Lomax turbulence model.

* CB B Constant used in the formula for the Klebanoff intermittency
factor F,v_,ain the outer region of the Baldwin-l,omax turbu-
lence model, and in the inner region of the Spalding-
Kleinstein turbulence model.

* CCLAU K Clauser constant used in the outer region of the Baldwin-
Lomax turbulence model.

* CCP CCp Constant used in the outer region of the Baldwin-Lomax tur-
bulence model.

56 Variables Listed by Block PROTEUS 2-D Programmer's Reference

CKLEB CKj_

CNA n

CNL n

CVK K

CWK C_,

ILDAMP

* INNER

* ITETA

* ITURB

* ITXI

* IWALLI(I)

* IWALL2(I)

LWAKE 1

LWAKE2

* PRT Pr,

* REXT1 Re_t"

* REXT2 Re,t,

Constant used in the formula for the Klebanoff intermittency
factor FK_,b in the outer region of the Baldwin-l.omax turbu-
lence model.

Exponent in the formula used to average the two outer region
_t profdes that result when both boundaries in a coordinate
dircction are solid surfaces.

Exponent in the Launder-Priddin modified mixing length
formula for the inner region of the Baldwin-Lomax turbulence
model.

Von Karman mi:dng length constant used in the inner region
of the Baldwin-Lomax and Spalding-Kleinstein turbulence
models.

Constant used in the formula for F_,, in the outcr region of
the llaldwin-Lomax turbulence model.

Flag for the Launder-Priddin modified mixing length formula
in the inner region of the Baldwin-Lomax turbulence model.

Flag for type of inner region turbulence model.

Flag for computing turbulent viscosity on constant r/lines.

Flag for turbulent flow option; 0 for laminar flow, 1 for tur-
bulent flow using the Baldwin-l,omax algebraic turbulence
model.

Flag for computing turbulent viscosity on constant _ lines.

Flags indicating type of surfaces in the _ direction; 0 for a free
boundary, 1 for a solid wall. The subscript 1 = 1 or 2, corre-
sponding to the _ = 0 and _ = 1 surfaces, respectively.

Flags indicating type of surfaces in the _/direction; 0 for a free
boundary, 1 for a solid wall. The subscript I = 1 or 2, corre-
sponding to the i,/= 0 and r/= 1 surfaces, respectively.

Grid point index in the _ direction used as the origin for
computing length scales for free turbulent flows.

Grid point index in the rt direction used as the origin for
computing length scales for free turbulent flows.

Turbulent Prandtl number, or, if non-positive, a flag indicat-
ing the use of a variable turbulent Prandtl number.

Reynolds number at the beginning of the transition region,
based on maximum total velocity and distance from _ = 0, for
flow predominantly in the _ direction with a leading edge at
_=0.

Reynolds number at the beginning of the transition re,on,
based on maximum total velocity and distance from _/= 0, for
flow predominantly in the r_ direction with a leading edge at
_/=0.

PROTEUS 2-D Programmer's Reference Variables Listed by Block 57

VORT(II,I2) Total vorticity magnitude.

58 Variables Listed by Block PROTEUS 2-D Programmer's Reference

4.0 PROTEUS SUBPROGRAMS

In this section, each subprogram in PROTEUS is described, first in summaly, then in detail. The
summary is simply a list of the subprograms with a brief description of the purpose of each one. The de-
tailed description includes, for each subprogram, a list of the subprograms that reference it, and a list of the
subprograms that it references. The Fortran variables that are input to and output from each subprogram
are defined. And fmally, details of the computations being done within each subprogram are presented.

4.1 SUBPROGRAM SUMMARY

f RO FEUSThe foUowing table presents a brief description of the purpose of each subprogram in the _ " '
code.

PROTEUS Subprogram Summary

Subprogram Purpose

ADI

AVISCI

AVISC2

BCDENS

BCELIM

BCF

BCI.:LIN

BCGEN

BCGRAD

BCMET

BCPRES

BCQ

BCSET

BCTE M P

BCUVEL

BCVDIR

BC'_WEL

BC_WEL

BLIN1

BLIN2

BLOCK DATA

BLKOUT

BLK3

Manage the block tridiagonal inversion.

Compute constant coefficient artificial viscosity.

Compute nonlinear coefficient artificial viscosity.

Compute density boundary conditions.

Eliminate off-diagonal coefficient submatrices resulting from
three-point boundary conditions.

Compute user-written boundary conditions.

User-supplied routine for linearization of user-supplied boundary
conditions.

Manage computation of boundary conditions.

Compute gradients with respect to _ and _/.

Compute various metric functions for normal gradient boundary
conditions.

Compute pressure boundary conditions.

Compute conservation variable boundary conditions.

Set various boundary condition parameters and flags.

Compute temperature boundary conditions.

Compute x-velocity boundary conditions.

Compute normal and tangential velocity boundary conditions.

Compute y or r-velocity boundary conditions.

Compute swirl velocity boundary conditions.

Compute inner layer turbulent viscosity along constant _ lines.

Compute inner layer turbulent viscosity along constant _ lines.

Set default values for input parameters, plus a few other parame-
ters.

Print coefficient blocks at specified indices in the _ and _7di-
rections.

Solve 3x3 block tridiagonal system of equations.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms 59

PROTEUS Subprogram Summa D"

Subprogam Purpose

BIK3P

BLK4

BIK4P

BI.K5

BIK5P

BLOUT1

BI OUT2

BVUP

COEFC

COEFE

COIiFX

COEFY

COEFZ

CONV

CUBIC

I';QS'I'AT

EXEC

FILTER

I:'I'I,_MI _

GEOM

INIT

INITC

INPUT

ISAMAX

ISAMIN

MAIN

NIE'I'S

OUI'PUT

PAK

PERIOD

PLOT

PRTtlST

PRTOUT

Solve 3x3

Solve 4x4

Solve 4x4

Solve 5x5

periodic block tridiagonal system of equations.

block tridiagonal system of equations.

periodic block tridiagonal system of equations.

block tridiagonal system of equations.

Solve 5x5 periodic block tridiagonal system of equations.

Compute outer layer turbulent viscosity along constant _ lines.

Computc outer layer turbulent viscosity along constant r/lines.

Update first sweep boundary, values after second sweep.

Compute coefficients and source terms for the continuity equation.

Computc cocfficicnts and source terms for the energy equation.

Computc coefficients and source terms for the x-momentum
equation.

Compute coefficients and source terms for the y or r-momentum
equation.

Compute coefficients and source terms for the swirl momentum
equation.

Tcst computed flow field for convergence.

Interpolation using Ferguson's parametric cubic.

[:se equation of state to compute pressure, temperature, and their
derivatives with respect to the dependent variables.

Manage solution of governing equations.

Rcarrange rows of the boundary" condition coefficient submatrices
and thc source tcrm subvector to eliminate any zeroes on the di-
agonal.

Compute auxiliary variables that are functions of temperature.

Manage computation of grid and metric parameters.
Gct uscr-defined initial flow field.

Set up consistcnt initial conditions based on data from INIT.

Read and print input, pcrform various initializations.

Find the first index corresponding to the largest absolute value of
the elements of an vector. This is a Cray BLAS routine.

Find the first index corresponding to the smallest absolute value
of the elements of an vector. This is a Cray extension to the BLAS
routines.

Manage overall solution.

Compute metrics of nonorthogonal grid transformation.

Manage printing of output.

Manage packing and/or interpolation of grid points.

Dcfme extra line of data for use in computing coefficients for spa-
tially pcriodic boundary conditions.

Write fdes for post-processing by CONTOUR or PLOT3D plot-
ting programs.

Print convergence history.

Print output.

60 PROTEUS Subprograms PROTEUS 2-D Programmer's Reference

t}R{)TII[;S Subpro_am Summal)'

Subpro_am t)urpose

RI(SII)

RtlSI

ROBIS

SASIM

SGt!I:A

SGliSI

S.XI{M2

I'B(_

I'IMS'IP

TITI_,BBI_

Compute residuals and write convergence histow file.

Read and'or write restart file.

Pack points along a line using Roberts transformation.

Compute the sum of the absolute values of the elements of a vec-
tor. This is a Cray BI,AS routine.

Factor a matrix using Gaussi,'m elimination. This is a Cray
! IN PAC K routine.

Solve the matrix equation Ax = B or ASx = B using the factors
computed by SGEFA. This is a Cray LINPACK routine.

Con_pute the L2 norm of a vector. This is a (2ray BI :\S routine.

Scl Iime-dcpendent boundary condition values.

Sct computational lime step.

Manage computation of turbulence parameters using Baldwin-
lomax algebraic model.

[Tpdate flow variables after each ADI swecp.

Compute magnitude of total vorticity.

4.2 SIBI}RO(;RAM I)ETAll.S

The subprograms used in I}P, OTt'IUS are described in detail in the remainder of this scction. A few
additional words arc necessary about thc input and output descriptions. The description of the input to
each subpi'ogram includes all Fortran variables actually' used by the subprogram that are defined outside thc
subprogram. Variables defined and used inside the subpro_am arc not listcd as input. In addition, vari-
ables that arc merely passcd through to lower level routines are not listed. Variablcs marked with an asterisk
arc uscr-spccified namclist input variables.

Similarly, thc output description includes only those variables computed inside Itlc subprogram and used
outside the subpro_am. It does not include variables computed by lower level routines. In general, vari-
ables defined inside the subprogram that are used by lower level routines arc listed as output, even if they
arc not needed alter control is returned to the calling program.

Vanables entering or leaving a subprogram through an argument list are defined in detail, l lowever,
most of the Fortran variables listed in the input and output dcscript2ms are contained in common blocks,
and arc dcfined in detail in Section 3.{}. For that reason, the)' arc" defined only briefly in this section.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms 61

Subroutine AI)I

Called by Calls Purpose

EXEC Manage the block tridiagonal inversion.BIKOUT
BI,K3
BLK3P
BLK4
BLK4P
BLK5
BIK5P

* IDEBUG

* IPRTIA, II'RT2A

ISWEI'_P

IT

KBCPER

NEQ

* NOUT

NPRTI, NPRT2

S

None.

Description

Debug flags.

Indices for printout in the { and r/directions.

Current ADI sweep number.

Current time step number n.

Flags for spatially periodic boundary conditions in the { and v/
directions; 0 for non-periodic, 1 for periodic.

Number of coupled equations being solved, N,q.

Unit number for standard output.

Total number of indices for printout in the _ and _ directions.

Computed solution subvector, A0" or A(_.

For each ADI sweep, subroutine ADI calls the appropriate block solver. The choice is determined by
the number of equations being solved, and by the presence or absence of spati',dly periodic boundary con-
ditions in the sweep direction.

Remarks

1. This subroutine generates the output for the IDEBUG(I), IDEBUG(5), and IDEBUG(6) options.

62 PROTEUS 2-D Subprograms: ADI PROTEUS Programmer's Reference

Subroutine AVISC 1

Called b_ C_s Purpose

EXIiC BI.KOUT Compute constant coefficient artificial viscosity.

A, B,C

* CAVS2E, CAVS4E, CAVS2I

I)TA U

* IAV2E, 1AV4E, IAV2I

* II)I!BUG

* ItlSTAG

* II)RT1A, IPRT2A

ISWF_F.P

* ISWIRL

IT

Jl

NC, NXM, NYM, NZM, NEN

* NOUT

NPRT1, NPRT2

NPT1, NPT2

NR, NRU, NRV, NRW, NET

RIIO, U, V, W, ET

S

Omp.t

A,B,C

S

Description

Coefficient submatrices A, B, and C without artificial viscosity.

Artificial viscosity coefficients _>, _), and E1.

Time step At.

Flags for second-order explicit, fourth-order explicit, and second-
order implicit artificial viscosity.

Debug flags.

Flag for constant stagnaation enthalpy option.

Indices for printout in the _ and)7 directions.

Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Current time step number n.

Inverse Jacobian of the nonorthogonal grid transformation, j.-1.

Array indices associated with the continuity, x-momentum,
y-momentum (or r-momentum if axisymmetric), swirl momen-
tum, and energy equations.

Unit number for standard output.

Total number of indices for printout in the _ and _ directions.

Ni and N 2 for non-periodic boundary conditions, N_ +1 and
N2 + 1 for spatially periodic boundary conditions in _ and ft.

Array indices associated with the dependent variables p, pu, pv,
pw, and E r.

Static density p, velocities u, v, and w, and total energy E r at time
level n.

Source term subvector S without artificial viscosity.

Coefficient submatrices A, B, and C with artificial viscosity.

Source term subvector S with artificial viscosity.

Subroutine AVISC 1 adds explicit and'or inlplicit artificial viscosity to the governing equations, using the
constant coefficient model of Steger (1978), as presented by Pulliam (1986b). The model is described in
Section 9.1 of Volume 1. The explicit artificial viscosity may be second and/or fourth order, and is added
only during the first ADI sweep. The implicit artificial viscosity is second order, and is added during both

sweeps.

The fourth-order explicit artificial viscosity is implemented in Fortran by redefining the source term
subvector as

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: AVISCI 63

c_4)ATi,j ._

S_,j -- Si, j "/i,j [(V'_A_)_Qi'J + (Vr/Ar/)2Qi'J]

where i and j vary from 3 to NPI'I 2 and from 3 to NPI'2 - 2, respectively. At grid points adjacent to

boundaries tlic lkmvth-ordcr differences in the above equation cannot be used, and therefore are replaced

by second-order differences. Thus, at i = "_and at i = Nl"l'l - 1, withj var3ing from 3 to NPI'2

Ji,j
[V{A_Qi, j-- (VrtArl)2Qi,j]

Similarily, at j 2 and at j = NPT2 - 1, with i varying from 3 to NPT1 - 1,

Si, i = Si, j +
Ji,j

[- (V_A_)2Qs,; + V,TA,TQ J

The second-order explicit artiticial _iscosity is implemented in Fortran by redefining the source tcnn
subvcctor as

c_)Ari,j

Sz"t = S2'J + Ji, j (V¢A{Qi,j + VrtAr/Qi,j)

where i andj vary from 2 to NPTI - 1 and from 2 to NPF2- 1, respectively.

Ihc second-order implicit artificial viscosity for the first ADI sweep is implemented in Fortran by re-

defining the coefficient block submatrices as

e/Ari,j

Ai'j = Ai'J Ji,j Ji-l,j

ClAri,j

= u,,j+ 2 ,/,,---7-4,i
r.lmri,j

Ci,j = (;i,j Ji,j Ji+l,j

where i andj vary from 2 to NP'I'I - 1 aud from 2 to NPT2- I, respectively. Similarily, for the second

sweep,

t:lA'ri, j

Ai'j = Ai'j Ji,j Ji,j-I

glAri,j

u,,;-- + 2 e ,j
ClAri,j

(7i,/= Ci, j .li, j Ji,j+l

Remarks

1. The sign in front of each artificial viscosity term depends on the sigm of the "ij" term in the difference
fommla. See Section 9.1 of Volume 1 for details.

2. The coding to add artificial viscosity to the energy and,_or swirl momentum equations is separate from

the coding for the remaining equations, and is bypassed if they are not being solved.

3. The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the

index in the non-sweep (i.e., "vectorized") direction, and the second subscript is the index in the sweep

64 PROTEUS 2-D Subprograms: AVISC1 PROTEUS Programmer's Reference

direction. For the first sweep (which includes all the explicit artificial viscosity) the order is thus (I2,I 1),
and for the second sweep the order is (I1,I2).

4. For spatially periodic boundary' conditions in the _ direction, fourth-order differences could be used at
i = 2 and at i = NPT1 - 1 (= N 0. Similarly, for the _1direction, fourth-order differences could be used

at j = 2 and at j = Nlrg2- 1 (= N2). The logic to do this has not been coded, however, and at these
points second-order differences are still used, as described above.

5.]'his subroutine generates the output for the IDEBUG(2) option.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: AVISCI 65

SubroutineAVISC2

Calledby
EXEC

Calls Purpose
BLKOUT Computenonlinearcoefficientartificialviscosity.

A, B,C

* CAVS2E,CAVS4E,CAVS2I
CP,CV
DTAU

ETAX,ETAY,ETAT
* IAV2E,IAV4E,IAV2I

* IDEBUG
* IttSTAG

* IPRT1A,IPRT2A
ISWEEP

* ISWlRL
IT

JI

NC,NXM, NYM, NZM, NEN

* NOUT

NPRTI, NPRT2

NPT1,NPT2

NR, NRU, NRV,NRW,NET

P,T
RGAS

RI{O, U, V,W, ET

S

XIX, XIY, XIT

A,B,C
S

CoefficientsubmatricesA, B, andC withoutartificialviscosity.
User-specifiedcoefficients_2,_, andel.
Specificheatscp and c_ at time level n.

Time step AT.

Metric coefficients _/x, _ly(or _/r if axisymmetric), and _/,.

Flags for second-order explicit, fourth-order explicit, and second-
order implicit artificial viscosity.

Debug flags.

Flag for constant stagnation enthalpy option.

Indices for printout in the { and _/directions.

Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Current time step number n.

Inverse Jacobian of the nonorthogonal grid transformation, J-_.

Array indices associated with the continuity, x-momentum,

y-momentum (or r-momentum if axisymmetric), swirl momen-
tum, and energy equations.

Unit number for standard output.

Total number of indices for printout in the _ and _ directions.

?,r and N2 for non-periodic boundary conditions, N, +1 and
A_ + 1 for spatially periodic boundary conditions in _ and _/.

Array indices associated with the dependent variables p, pu, pv,
pw, and E r.

Static pressure p and temperature T at time level n.

Gas constant R.

Static density p, velocities u, v, and w, and total-energy, E r at time
level n.

Source term subvector S without artificial viscosity.

Metric coefficients _, _y (or _, if axisymmetric), and _,.

Coefficient submatrices A, B, and C with artificial viscosity.

Source term subvector S with artificial viscosity.

66 PROTEUS 2-D Subprograms: AVISC2 PROTEUS Programmer's Reference

Description

Subroutine AVISC2 adds explicit artificial viscosity to the governing equations, using the nonlinear co-
efficient model of Jameson, Schmidt, and Turkel (1981), as presented by Pulliam (1986b). The model is

described in Section 9.2 of Volume 1. Second-order implicit artificial viscosity can also be added, using the

constant coefficient model of Steger (1978) described in Section 9.1 of Volume 1, although this is not

normally used in combination with the explicit nonlinear coefficient model. The explicit artificial viscosity

is added only during the first ADI sweep. The implicit artificial viscosity is added during both sweeps.

The explicit artificial viscosity in the _ direction is computed first, at the r/-indices j = 2 to NPT2 - I.

The spectral radius term _b,, and the pressure gradient scaling factor a,,, are computed and stored in local

one-dimensional arrays for i= 1 to Nlrl'l. Special formulas are used to compute _r near boundaries, as
described in Section 9.2 of Volume 1.

The second-order artificial viscosity is added tirst, and is implemented in Fortran by redefming the source

term subvector as

4,

Or, after evaluating the differences,

Si, j = Si, j + -)- + 7
i+1,2 i,)

Q,_,j/,j+ ,

where i varies from 2 to NPT1 - 1.

The fourth-order explicit artificial viscosity is added next, and is implemented similarly by redefining the
source term subvector as

Or, after evaluating the differences,

q,
 ,jjk :)i,j t l+2,j- 3Q1+1,)

where i varies from 3 to NPTI - 2. Special formulas are used at i= 2 and at i= NH'I - 1, as described

in Section 9.2 of Volume 1.

The explicit artificial viscosity in the _/ direction is computed next, and is implemented in a manner

analogous to that just described for the explicit artificial viscosity in the { direction.

The second-order implicit artificial viscosity for the first ADI sweep is implemented in Fortran by re-

defining the coefficient block submatrices as

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: AVISC2 67

_IATi, j

Ai'J = Ai'j Ji, j Ji-t,j

_lAri,j

B ,j= B ,j+ 2 J''j
elA'ri, j

Ci'j = Ci'j Ji,j Ji+ l,j

where i and j vary. from 2 to NPTI - 1 and from 2 to NPT2 - 1, respectively.
sweep,

_IAri, j

Ai'j = Ai'j Ji,j Ji,j-I

_lA'ri,j

_.lA'ri, j

Ci'j : Ci'j Ji, j Ji,j+l

Similarily, for the second

Remarks

1. The sign in front of each artificial viscosity term depends on the sign of the "id" term in the difference
formula. See Section 9.1 of Volume 1 for details.

2. The coding to add artificial viscosity to the energy and/or swirl momentum equations is separate from
the coding for the remaining equations, and is bypassed if they are not being solved.

3. The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the
index in the non-sweep (i.e., "vectorized") direction, and the second subscript is the index in the sweep
direction. For the first sweep (which includes all the explicit artificial viscosity) the order is thus (I2,I 1),
and for the second sweep the order is (I 1,I2).

4. For spatially periodic boundary conditions, the need for special formulas near boundaries could be
eliminated. The logic to do this has not been coded, however.

5. "['his subroutine generates the output for the IDEBUG(2) option.

68 PROTEUS 2-D Subprograms: AVISC2 PROTEUS Programmer's Reference

Subroutine BCI)FNS (IBC,I:BC,II]Q,IMIN,IMAX,IFR)UNI))

Called by Calls Purpose

BC(iEN BCGRAD Compute density boundary conditions.
BCMFTI'

l.___m,_t

I)EI,

IBASE, ISTEP

IBC, FBC

IB()IJNI)

IEO

IM1N, IMAX

IS\VI!IiP

IV

.11

* N()IYI'

NP,

R t I 0

A. B, C

Description

Computational _m-idspacing in sweep direction.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Boundary condition types and values for current sweep direction,

specified as IBC(I,J) and FBC(I,J), where I runs from I to :\r,v,

corresponding to the .\:'_ conditions needed, and J = 1 or 2, cor-
responding to the lower and upper boundmies.

Flag spccil_ing boundau; 1 for loxvcr bot, ndary', 2 for upper

bounda W.

Boundary. condition equation number.

Minimum and maximum indices in the sweep direction.

Current AI)I sweep number.

Index in the "vectorized" direction, i,.

Inverse Jacobian of the nonorthogonal grid transformation, J i

/Init number for standard output.

Array' index associated with the dependent variable p.

Static density p at time level n.

Coefficicnt submatrices A, B, and C at boundary IBOUNI) (row

IEQ only).

Source term subvector S at boundary IBOI.'ND (element IEQ

only).

Subroutine BCDENS computes coefficients and source terms for density' boundary conditions. The

lincaFizcd equations for the various general types of boundao _ conditions are developed in Section 7.0 of

Volume 1. The following sections apply these generalized equations to the particular density' boundaay,"
conditions in PROTEUS. 6

In the following description, for the first ADI sweep the dependent variable should have the superscript *, repres-
enting the intermediate solution, and for the second AD1 sweep it should have the superscript n, representing the
final solution. For simplicity, however, only the superscript n is used. The superscripts on all other variables are
correct as written.

PROTEUS 2-D Programmer's Reference PROTEIS Subprograms: BCDENS 69

No Change I"rom Initial Conditions, Ap = 0

Applying equation (7.3) of Volume 1, and noting that Og/OQ = JOglOQ, we get simply

An

Ji,j Api, j = 0

Specified Static Density, p =f

Applying equation (7.5) of Volume 1,

An =fn+l n
Ji,j Api,j _,j -- Pi,j

Specified Two-Point Density Gradient in Coordinate Direction, OplO4? = f

Applying equation (7.8) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differencing,

An ^n (A_)A,; + P1,i- P2,;__Jl,jApl,j + J2,jAp2, j = -n+l n n

At the _ = 1 boundary,

An An ,_+1 n n

--JN l -l,j APN l -1,j + JNl,; APNI,j = (A_)f£_L,j + PN 1 --I,j -- PNI, j

Analogous equations can easily be written for the _t boundaries.

Specoqed Three-Point Density Gradient in Coordinate Direction, Op[Od? = f

Applying equation (7.8) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differenc-
ing,

An An An n+l n ,ff n
--3JI,j ApI,J + 4J2,j AP2,J - J3,j AP3,j = 2(A_)A,) + 3Pl,j - 4p2,j + P3,j

At the _ = 1 boundary,

_ An An = 2(A_)fAn',,51 -- pnNt --2,j + 4PN 1--1,j -- 3pnN1,jJN 1 -2,j AP_' l -2,j 4JN l --1 ,j ApN 1 -1 ,j + 3JN1, j ApNI, j n

Analogous equations can easily be whiten for the _t boundaries.

Specified 71_'o-Point Density Gradient in Normal Direction, Vp • n = f

Applying equation (7.12a) of Volume 1 at the { = 0 boundary, and using two-point one-sided differ-
encing,

An An A_ n+l (_x_x + _y_y)l,j _qPl,j + PI,j- p2,j
-JI,jApl,j+ J2,jAp2,J = ml, j ,J -- ml,j

where

2

m = _f _x + _y

and 6_ is the variably centered difference operator presented in Section 6.0 of Volume 1.
boundary,

An An

-J,'q - 1,j Ap A',- l,j + JN_,j Ap,% j -

At the _ = 1

A_ F,o+, +
_yny) Nl,j

-]
+ - p,i,,,;

mNl,j LJNvJ - m%j J

70 PROTEUS 2-D Subprograms: BCDENS PROTEUS Programmer's Reference

,,Maalogous equations can easily be written for the _/boundaries.

Specified Three-Point Densit F Gradient in Normal Direction, Vp • -n = f

Applying equation (7.12a) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differ-
encing,

AR An An

-3J] ,j Apl ,j + 4.I2, j Ap2,j - "]3,7 Ap3,j =

2A_ If n+, (_x_lx + _yrly)l,j n] n n nml,j ,j -- ml,j 3qPl,j + 3PI,j -- 4P2,j +p3,j

where

and 6 7 is the variably centered difference operator presented in Section 6.0 of Volume 1. At the _ = 1
boundary,

A_' A_ An

JN 1 -2,j _P N 1 -2,j -- 4JN l -1 ,j Ap ,v I _ 1,j + 3JNt,j Ap Nl,j =

2A_ F:+,_ (e:x+ _yny)Nl, j n _ n n _ n

mN L,j mNl,jJ'_'I'J 6qPA't,j PN l --2,j + 4PN_ --1,j 3PNbj

Analogous equations can easily be written for the _/boundaries.

Linear Extrapolation of Static Density

Applying equation (7.14) of Volume 1 at the ¢ = 0 boundary,

A_ A Ayl r _Ayl n rl r'1

Jl,j Apl,j -- 2J2,j txP2,j + J3,j txP3,j = -P l,j + 2p2,j - P3,j

At the _ = I boundary,

JN_ -2,j APN l -2,j -- 2JN_ -l,j Appq -1,j + JN_,j APNI,j = --PN_ --2,j + 2PN I -1,j -- PNbj

Analogous equations can easily be written for the _1boundaries.

Remarks

1. This subroutinc uses one-dimensional addressing of two-dimensional arrays, as dcscribed in Section 2.3.

2. An error message is generated and execution is stopped if a non-existent density boundary condition is
specified.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: BCDENS 71

Subroutine BCt:IAM

Called by Calls Purpose

EXIiC SGEFA Eliminate off-diagonal coefficient submatrices resulting from three-
SGI+..SL point boundary conditions.

l.p,,t

A, B, C

IBCtil M

ISWEI:'I _

IV

NI Q

NEQP

NH'S

S

Coefficient submatrices A, B, and C before eliminating off-
diagonal blocks.

t:lags for elimination of off-diagonal coefficient submatrices re-
suiting from three-point boundary' conditions in the + and _7di-
rections at either boundaw; 0 if elhnination is not necessary, 1 if
it is.

Current AI)I sweep number.

Index in the "vectorized" direction, i+.

Number of coupled equations being solved, N++.

Cray PARAMETER specifying maximum number of coupled
equations allowed.

Number of grid points in the sweep direction, N.

Source term subvector S before eliminating off-diagonal blocks.

A, B, C Coefficient submatrices A, B, and C after eliminating off-
diagonal blocks.

Source term subvector S after eliminating off-diagonal blocks.

I)escription

Subroutine BCI-I JM eliminates the off-diagonal coefficient submatrices that result from the application
of three-point boundary conditions. This is necessary when three-point gradients are specified in the coor-
dinate or normal direction, and when linear extrapolation is used. The procedure is described in Section
8.2.1 of Volume 1.

Remarks

. Subroutines SGF, FA and SGESL are Cray [,INPACK routines. In general terms, if the Fortran arrays
A and B represent A and B, where A is a square N by N matrix and B is a matrix (or vector) with
NCOI, columns+ and if the leading dimension of the Fortran array A is LDA, then the l;ortran se-
quence

CALL SGEFA (A,LDA,N,IPVT,INFO)
DO 10 J = 1,NC0L
CALL SGESL (A,LDA,N, IPVT,B(I,J),0)

I0 CONTINUE

computes A _B, storing the result in B.

72 PROTEISS 2-D Subprograms: BCELI,M PROTEUS Programmer's Reference

SubroutineBCF(IBC,FBC,1EQ,IMIN,IMAX,IBOUND)

Calledby Calls Purpose
BCGEN BCFLIN Computeuser-writtenboundaryconditions.

BCGRAD
BCMET

DEL
IBASE,ISTEP

IBC, FBC

IBOUND

IEQ

IMIN, IMAX

ISWEEP

ISWIRL

IV

JI

NOUT

NR, NRU, NRV, NRW, NET

Computational grid spacing in sweep direction.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Boundary condition types and values for current sweep direction,
specified as IBC(I,J) and FBC(I,J), where I runs from 1 to N,v
corresponding to the ,'\"e_conditions needed, and J = 1 or 2, cor-
responding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary' condition equation number.

Minimum and maximum indices in the sweep direction.

Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Index in the "vectorized" direction, i_.

Inverse Jacobian of the nonorthogonal grid transformation, J _.

Unit number for standard output.

Array indices associatcd with the dependent variables p, ,ou, pv,
pw, and Er.

Output

CoeffÉcient submatrices A, B, mad C at boundary IBOUND (row

IEQ only).

Source term subvcctor S at boundary IBOUNI) (element IEQ

only).

Description

Subroutine BCF computes coefficients and source terms for user-w_ten boundary conditions of the
form AF = O, F =f OF/Off =f and VF. n =f The values of F and its derivatives with rcspect to the de-

pendent variables must be supplied by the user-written subroutine BCFI,IN. The linearized equations for
these types of boundary conditions are developed in Section 7.0 of Volume 1. The following sections ex-
pand these generalized equations in detail?

In the following description, for the first AD! sweep the dependent variables should have the superscript *, re-
presenting the intermediate solution, and for the second ADI sweep they should have the superscript n, representing
the final solution. For simplicity, however, only the superscript n is used. The superscripts on all other variables
are correct as wl-itten.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: BCF 73

No Change From Initial Conditions, AF = 0

Applying equation (7.3) of Volume 1, and noting that 0g/8,£_ = JOg/c?Q, we get simply

[OF.A OF _(p_,)+ OF : aF a(._) OF ._3_ =
Ji,JL)p""+a(-iTg a,(.0A(p")+o(-_ . +o-g;-_"'TJi,j 0

_t?eci.fied Value, F =f

Applying equation (7.5) of Volume 1,

Ji'J I OpOFAp + O_pu)Ok" "_ O--_OF A O_pw)OF A _OF A] n
__ t,_n+l _ /_:n

a(p,,)+ a(p,,)+ a(;w)+ aEr._,j =_,j ,,j

Specified Two-Point Gradient in Coordinate Direction, 8f'[Od? = f

Applying equation (7.8) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differencing,

[OF A_ + OF " OF A(:v" OF " OF AT_n-e_'_LVY. _ zX(p_)+ _ P J+ O_pw)a(pw)+ _ aE +
AI,j

[c?F A OF _ OF,,", OF ^ OF ^T']nJ_,; _ a. + a-D-ffa(..) + _ ,._p,,_+_ a(ew)+_ ,',e =
--12,2

(a_)::,_._+ F" - F"1,j 2,j

At the _ = 1 boundary,

I OFz_+ OF ^ OF ^ OF " OF ._-]n +--JN,-,.1 VYO O--D-ffA(pu)+ o(-DVA(;0 + _ _X(.w)+ 0e---_"_rIx,_
SJ

[- OF .A OF ,,^,+ OF ^ OF ,,^,+ OF A_l.q n
Ju,.jL _ :/' + _ _'_P_) -_ A(p,)+ _ :tpw) 0er _i,,:,,;

Analogous equations can easily be written for the r/boundaries.

Specified Three-Point Gradient in Coordinate Direction, 8F/8c k = I:

Applying equation (7.8) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differenc-
ing,

[" OF .^ OF ^ + OF A(;v) OF ^ + OF A_T_ n
-3Jl'l L-_p taP + o'_ A(pu) O(pv) + O('_ A(Pw) OET -.]l,J

+

[Of" " OF ^_0--_ _OF ^ _OF ^ _OF ^ In -4J2.1 a. + a(o.)+ a(ov)+ a(pw)+ aF.r.2,:

V OF_+ OF ^ OF ^ OF ..^. OF ^rl n
"% k_ O(--Tga(p.) +_ a(ov)+_ ,,tow_+_ _E =

A 3,.]

2 A¢ n+l 3Vlnj _ 4r2n,](_,: + + r;,;

At the [-- 1 boundary,

74 PROTEUS 2-D Subprograms: BCF PROTEUS Programmer's Reference

[OF A_ Of"., ^, OF A OF ^ OF ._ I n
Jx I -2,j _ --r oC _ /_[pU) -_ _ A(pl,') 7 t- _ A(pl/F) _t_ _ _I2T |

T A N, -Lj

^ OF _'
O--F-FA,_ + OF _' OF + _ A(p_v) + AE y

[A(pu)+ "" ""
AOf" Ok" OF I'. OF _, OF AE -1

3J&,j -_p A_ + _pu) _ z_(pv) + _ n(p,v) + OU---7 "U,v,,j

n+l .n , .n .n
2(A0f4: ,j - 12v _ -2,j + 4f Nt -1 ,j -- 3f,v_,j

+

Analogous equations can easily be written for the q boundaries.

Specified Two-Point Gradient in Normal Direction, VF. n = fl

Applying equation (7.12a) of Volume 1 at the { = 0 boundary., and using two-point one-sided differ-
encing,

I OF " OF " OF A OF AE In-"_,J -_A_+_(--_A(;")+o-_p_)A(P_)+a(-i)W_(p_)+ eE---7_J,,j+

I OF OF A(p_O+ OF ..A. OF .,_, OF ._-]n =

A¢ [fln+, (¢x_lx + {y'ly)l,) 6qF, nyl + Fnj_ Ff, jmt,j ,J - rn l'j

where

and d, is the variably centered difference operator presented in Section 6.0 of Volume 1.
boundary,

At the _ = 1

I OF ,^ OF ., _, OF ^ OF ^ OF ^rl n--JN,-1,j _ '_P + 0_ r_[pu) + _ A(pv) + _ A(pw) + -_r AE IN,--1,j

[OFa_ + OF ^ OF ^ OF ^ OF ^l n =JN,,J _ _ A(pu) + 0--_ A(pv) + _ A(pw) + _ AETAN1,]

a¢ ['_n+__ (G,7_+ Oty)<,j . "] n _ .n
raN,, 2 mNx,] JLJNI,J _F/vl|oJ + Fie I -1,j I_NI,J

Analogous equations can easily be written for the rt boundaries.

Specified Three-Point Gradient in Normal Direction_ V f'. _ = f

+

Applying equation (7.12a) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differ-
encing,

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: BCF 75

[- OF _,, _ A(pu) + OF ^ OF " OF-3Jl'J L -_P ap + _ A(pv) + _ A(pw) + _ AE +

,, ^ 0F

4J2,J "_p O_pu) A(pU) + _ °'tP I _UT A2,]otP)

A ^T_ n

• [- OF.^ _ ^ _F ^ OF A(pw)+ _F±(pu) + Nov) + J3,:

2_ [rn+l _ (_xrlX + CYvlY)I'J 6,f ,n,y] + 3Flnj - 4F2n,2 + lZ3nj
mt,j _l,j ml, j

whcre

m = _y

and 6_ is the variably cenlered difference operator presented in Section 6.0 of Volume I. At the _ = 1

boundary,

j [OF OF ^ OF -, _v" + OF ^ OF A_r] n _
N,-2UL-_-pA_+ _(--7_(P_)+ o(e_)_P _ 0(--775-A(Pw)+T_r J_,_,-=u

[oF + oF _, +4lN,_l,] -_p _ tO)+ O"_'_pv)A(pV)+ O_pW) atp)+-_T AN,-I,]

3_ov_ ^ OF ^ OF^T] n
_ OV A_ + OF ^ A(pv)+_A(PW)+_AE =

2a¢ 1-:.+, (¢_n_+ cy,Te)N,u6.r;_,j] I:" " F"- - Nt -2,) + 4F,_: -1,j - 3 x,,j

raN1, j L J N1") mNi,j

Analogous equations can easily be written for the _ boundaries.

Linear Extrapolation

Applying equation (7.14) of Volume 1 at the _ = 0 boundary,

4
I OF A_ + OF ^ OF " OF ^ OF " _Jt,] -_p _A(pu)+_A(Pv)+_A(Pw)+ OE T AE l,j

/,, ^T-1 rl
. F OF .^ OF ^ 0_@v) A(pv) + OF ^ OF_'J LW ,,o+ _ _(P_>+ _ A(pw)+_ AE +otp] .ALj

s_,+ _ + _ a(p:) + -_r J3,:

- ff,i + _+-?,:-r;,s

At the _ = 1 boundary,
^ ^ R

OF A_ + OF. a(pu) + 0-0-0-0-0-0-0-0-0-0_A(pv) + -_r A,V,-_,j
JN_ -2,j _ O[pU) O[pw)

+

I OF A_ + 3F ^ OF ^ OF ^ @_r ^ -ln2J,.-_d _ _ a(pu)+ _ ,x(pv)+ _ A(pw)+ aErJv ' -,,J

[- OF _^ OF., _u" OF ^ OF ^ OF A_r] n =

JNI'J L _p I'_O + _ l'_tP) + O-O-O-O-O-O-O-O-O-O_pV)A(pV) + O_pW) A(pW) + "_T .JNI,J

F _ 2F_ n- ,s_ -2,j + -l,j -- F_vvJ

76 PROTEUS 2-D Subprograms: BCF PROTEUS programmer's Reference

Analogousequations can easily be written for the _t boundaries.

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. An error message is generated and execution is stopped if a non-e_stent user-written boundary condi-
tion is specified.

3. The scratch array DUMMY, from the common block DL'MMYI, is used to store the value of the
function F for boundary condition types + 93. The array is filled in subroutine BCFLIN and passed
through to subroutine BCGRAD.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: BCF 77

Subroutine BCFI_IN (IBC,II';Q,IBOUND,IMIN,IMAX,F,DFDRtlO,DFDRU,DFDRV,DFDRW,
DFDET,FBC)

Called by Calls Purpose

BCF User-supplied routine for linearization of user-supplied bounda_" con-
ditions.

h,_mm

IBC

IBOUND

IEQ

IMIN, IMAX

Boundary, condition types for current sweep direction, specified
as IBC(I,J), where 1 runs from 1 to ,_ corresponding to the N,eq '

conditions needed, and J = I or 2, corresponding to the lower an_

upper boundaries.

Flag specifying boundary'; 1 for lower boundary', 2 for upper
bounda U.

Bounda_" condition equation number.

Minimum and maximum indices in the sweep direction.

DFI)RIIO, I)FDRU, I)i:I)RV,
DFI)RW, I)I:I)I{T

I)UMMY

12

I:BC

Three-element arrays, specified as DFI)RIIO(IW), etc., giving
the values of 0kT00, OFlO(ou), 8/:'/O(pv), OI:lO(ow), and OF/OEr.

A scratch array, specified as I)UMMY(I,J), containing the value
of the function F. The subscripts I and 3 run from 1 to N_ and
N2, respectively. This is only needed for boundary' condition types
_+ 93, and only needs to be defined at the beginning of each sweep.

A three-element array specified as F(IW) giving the value of the
function/'at the boundary (IW = 1), at the In'st point away from
the boundary (lW = 2), and at the second point away from the
boundary (IW = 3). Values at IW = 3 are not needed for bound-
ary condition types 91, 92, or -92. V',ducs at lW = 2 are not
needed for boundaiT condition type 91.

Boundary condition values for current sweep direction, specified

as FBC(I,J), where I runs from 1 to N,q, corresponding to the N,q
conditions needed, and J = 1 or 2, corresponding to the lower and
upper boundaries. This is only needed if values for GBCI or
GBC2, or FBCI or FBC2, are not specified in the input namelist
BC.

l)escription

Subroutine BCFI.IN is a user-written routine used in conjunction with subroutine BCF for user-written
boundary conditions of the form AF= 0, F=f, OF/c?4 =f, and VF. n =f BCFLIN supplies the values of
F and its derivatives with respect to the dependent variables, which are required for writing the linearized
form of the bounda_" condition.

The version of BCFLIN supplied with PRO'I'EUS makes BCF equivalent to BCTEMP, except for the

total temperature options in BCTEMP. Thus F= T, OF/Op = 0770p, etc., where T and its derivatives with
respect to the dependent variables are computed using the perfect gas equation of state. (See Section 5.3
of Volume 1.) This version of BCFI.IN is intended as an example for use in coding boundary conditions
not already available.

78 PROTEUS 2-D Subprograms: BCFLIN PROTEUS Programmer's Reference

Remarks

l°

2.

This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

The capability of specifying FBC as an output variable may be useful in writing time-dependent
boundary condilions. It also may be used when specifying boundary conditions involving derivatives
in both coordinate directions. In this case, the derivatives in the non-sweep direction may be lao_ged
one time step and treated as source terms.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: BCFLIN 79

Subroutine BCGEN

Called by Calls Purpose

"BvuP IiCI)I'INS Manage computation of boundary' conditions.
EXEC BCI:

BCPRES
BcQ
BCll!MP
BC1;Vt!I,
BCVI)IR
I_C\'VI_I.
BC\\%TL
BIKOUT

* I:t_C I, FB(?2

* 113('1, IBC2

1DE B U G

II'RT1A, I PI_,'I'2A

ISWEIBp

IT

1V

II, I2

NBC

NEQ

* NOUT

NPRT1, NPRT2

* NI, N2

1BC, i:BC

IBOUND

IEQ

IMIN, IMAX

Description

l)oint-by-point boundary condition values for the { and >l di-
rections.

Point-by-point boundary condition types for the _ and)1 di-
rections.

Debug flags.

Indices for printout in the _ and _1directions.

Current AD1 sweep number.

Current time step number n.

Index in the "vectorized" direction, (.

Grid indices i and j, in the _ and r/directions.

Cray PARAMETER specifying number of boundary conditions
per equation.

Number of coupled equations being solved, J\',v"

Unit number for standard output.

Total number of indices for printout m the _ and _! directions.

Number of grid points N_ and N2, in the _ anti)1 directions.

Boundary' condition types and values for current sweep direction,

specified as IBC(Ij) and I:BC(IJ), where I runs from 1 to _",'_q,
corresponding to the N,, conditions needed, and J = 1 or 2, cor-
responding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary-.

Boundary condition equation number, from 1 to N,q.

Minimum and maximum indices in the sweep direction.

Subroutine BCGEN manages the computation of coefficients and source terms for boundary, conditions.

It first loads the NEQ boundary' condition types and values from the input arrays IBCI and FBCI, or IBC2

80 PROTEUS 2-D Subprograms: BCGEN PROTEUS Programmer's Reference

andFBC2,dependingon theADI sweep,into thearraysIBC and FBC. This was done so that the BC
routines could be non-sweep dependent. Next the coefficient submatrices and source term subvectors at the
two boundaries in the current sweep direction are initialized to zero. And finally, the appropriate BC rou-
tine is called, depending on the input boundary' condition type, for each of the NEQ boundary' conditions
at each boundary in the sweep direction.

Remarks

1. An error message is generated and execution is stopped if any of the non-existent boundary condition
types 80-89 is specified, or if the boundal 3' condition type is less than 0 or greater than 99.

2. This subroutine generates the output for the IDEBUG(3) option.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: BCGEN 81

Subroutine BCGRAD (F.,I,DFDI,DFD2)

Called by Calls Purpose

Compute gradients with respect to _ and r/.BCDENS
BCF
BCPRES

BCQ
BCTEMP
BCL'VEI.
BCVDIR
BC'_WEI_
BC_WEL

* AIPIIAI, ALPHA2

DX1, DETA

F

I

ISWEEP

I1, I2

* N1, N2

DFDI, DFD2

Description

Spatial difference centering parameters a t and a 2, for the _ and r/
directions.

Computational grid spacing A_ and A_/.

A two-dimensional array, specified as F(I,J), containing the func-
tion fwhose gradient is to be computed. The subscripts I and J
run from 1 to N t and N 2, respectively.

Current grid point index in the current sweep direction.

Current ADI sweep number.

Grid indices i and j, in the _ and _/directions.

Number of grid points N t and N2, in the _ and r/directions.

First derivatives of f with respect to _ and _/.

Subroutine BCGRAD computes ftrst derivatives of the functionf with respect to _ and _/, at the current

grid point in the ADI sweep direction. At interior points, the variably centered difference formula presented
in Section 6.0 of Volume 1 is used. For derivatives with respect to _,

. ,-_- _,_- _--T[(1- _)£+_,j+ (2_- 1)Aj - ___,j]

An analogous formula is used for _ derivatives.

At boundaD" points three-point one-sided formulas are used.

-_- _,j- 2a--T(-3f_,1 + 4f:,j -f3,j)

"_ N,.J -- 2A'---'-f(f'_",-2,j -- 4f,_.-1 ,J + 3fv_,j)

Again, analogous formulas are used for _/derivatives.

82 PROTEUS 2-D Subprograms: BCGRAD PROTEUS Programmer's Reference

Subroutine BCMET (I,FM0,FMI,FM2)

Called by Calls Purpose

BCDENS
BCF
BCPRES

BCQ
BCTEMP
BCUVEL
BCVDIR
BC_WEL
BCWVEL

Compute various metric functions for normal gradient boundary' con-
ditions.

ETAX, ETAY

I

ISWEEP

I1, I2

XIX, XIY

FM0, FM1, FM2

Description

Metric coefficients rl_ and r/y (or _, if axisymmetric.

Current grid point index in the current sweep direction.

Current ADI sweep number.

Grid indices i and j, in the _ and rt directions.

Metric coefficients _x and _ (or _, if axisymmetric.

Various metric functions used for normal derivative boundary
conditions.

Subroutine BCMET computes metric functions used for normal gradient boundary conditions. For the

first ADI sweep,

_2CT7-. 2
FM0 = x/' ix + _y

FMI = 0

FM2 = _x_lx + _yrly

And for the second swecp,

2
F.'_10 = 4_ 2 at- r/y

FM1 = _xrlx + _y_ly

FM2 = 0

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: BCMET 83

SubroutineBCPRES (IBC,FBC,IEQ,IMIN,IMAX,IBOUND)

Called by Calls Purpose

BCGEN BCGRAD Compute pressure boundary conditions.
BCMET

CP, CV

DEI.

DPDRtlO, DPDRU, DPDRV,
DPDRW, DPDET

DTDRIIO, DTDRU, DTDRV,
DTI)RW, DTDET

GC

IBASE, ISTEP

IBC, FBC

IBOUND

IEQ
1MIN, IMAX

ISWEEP

ISWlRL

IV

JI

NOUT

NR, NRU, NRV, NRW, NET

P,T

PR

RGAS

RIIO, U, V, W

* RtlOR, UR

A,B,C

Specific heats cp and q at time level n.

Computational grid spacing in sweep direction.

Derivatives Op/c?p, Op/O(pu), Op/cq(pv), Op/c_(pw), and @p/OEr.

Derivatives OTIs?p, OTJO(pu), OT[O(pv), OT/c?(pw), and OT/OE r.

Proportionality factor gc in Newton's second law.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Boundary condition types and values for current sweep direction,
specified as IBC(I,J) and FBC(I,J), where I runs from 1 to N_v
corresponding to the N,q conditions needed, and J = 1 or 2, cor-
responding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.

Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Index in the "vectorized" direction, i,.

Inverse Jacobian of the nonorthogon:.d grid transformation, J '.

Unit number for standard output.

Array indices associated with the &pendent variables p, pu, pv,
pw, and E r.

Static pressure p and temperature T at time level n.

Reference pressure p,.

Gas constant R.

Static density p, and velocities u, v, and w, at time level n.

Reference density p, and velocity u,.

Coefficient submatrices A, B, and C at boundary IBOUND (row
IEQ only).

Source term subvector S at boundary' IBOUND (element IEQ
only).

84 PROTEUS 2-D Subprograms: BCPRES PROTEUS Programmer's Reference

Description

Subroutine BCPRI{S computes coefficients and source terms for pressure bounda D' conditions. The
linearized equations for the various general types of boundary conditions are dcveloped in Section 7.0 of

\'olume l. "fhe following sections apply" these generalized equations to the particular pressure bounda U
conditions in t'ROfEUS. 8

,Vo Change From Initial Conditions, Ap = 0

Applying equation (7.3) of Volume 1, and noting that @/YQ = J@/e?Q, we get simply

Ji, j

The derivatives @lOp, @leO(pu), etc., depcnd on the equation of state. They are defined for a perfect gas
in Section 5.3 of Volume 1.

S_2_Ted Static 1_

Applying equation (7.5) of Volume 1,

A A

*,J 2
_l i, j P rHr

12

-- - Pi, j

Specified Two-l'oint l'ressure Gradient in Coordinate Direction, c_p/O_b = f

Applying equation (7.8) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differencing,

[A]@ _ @ a(#u)+ @ A @ ,,
AI,j

J2,j

_)}_.'A_"_):_ P_,_ _ .+ Pl,j --PLY
PrUr

At the { = 1 boundary,

--J,%', -1,j 0-_ O_pZg) a(pu) + A(3v) -{- _ A(pw) -4- _E T _ J,,vt -1,j

FOp _ @ _ @ ,, op _x(t,w)+ op A
&,,iL w Ap+ A(#u)+ A(#v)+ At; =J _Vl,J

(_ _,_Fn+l Prgc n n
"tJ*_l,J _ + P'V1 -1 ,j -- PNpj

P rtlr

Analogous equations can easily be written for the rt boundaries.

In the following description, for the first ADi sweep the dependent variables should have the superscript *, re-
presenting the intermediate solution, and for the second ADI sweep they should have the superscript n, representing
the final solution, l:or simplicity, however, only the superscript n is used. The superscripts on all other variables
are correct as written.

PROTEUS 2-1) Programmer's Reference PROTEUS Subprograms: BCPRES 85

Specilqed Three-Point Pressure Gradient in Coordinate Direction, OplOqb = f

Applying equation (7.8) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differenc-

ing,

a(p,,) + _ + _ a(pw)+ _ +

4%[Op Op A _ ep A el, AT)_Wp A_+ _ a(ou)+ a(2_,)+ _ A(p_,.)+ _ AE -
A2,j

ap Op _ Op @ _ _

J3 ,j

2(aey;,,+_ Prgc n n
, -----2- + 3&,j - 4p_,j + P3,j.--is

P r Ur

At the _ = 1 boundary,

F ap ,, _ A(_u)@ " @ A Op _,7_+ + + + ETJ,,,

Fop-_+_A(;u) ep A
4J'v'-l'Jk ''p

Fap ,, ap At"
3JN"J k -_p Ap + O_pu) A(;u) Op A+ o-(7S _(pv)+ O_fw)A(;w) =

2(A{)/;,,+t P_gc n 4 n, n2 PN l -2,j + PlYl -1,j -- 3PN>j
p rUr

+

Analogous equations can easily be written for the r/boundaries.

Specified Two-Point Pressure Gradient in Normal Direction, Vp •n =,f

Applying equation (7.12a) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differ-
encing,

-J,,J I _'v + a(pv) _._. + aEd +
L T Jl ,j

r @ _ o_;_) Op ^ Op A OP ^Tln
A2,j

m]A_Ef_n+'Prgc,y ur (_x'_x+ _y'ty)] yml ,J n] n n.j Pr2 " 6qPl,j + Pl,j- P2,y

where

and 6_ is the variably centered difference operator presented in Section 6.0 of Volume 1. At the _ = 1
boundary,

86 PROTEUS 2-D Subprograms: BCPRES PROTEUS Programmer's Reference

A @ ,, @ _, .1'_
op _ + 0 _ A(F.)+ -- a(;w) + AE7 +

o; A;_+ @ A(;u)+ A(fl) + _ A(;N)+ aL =

A_ [,-n+_ ;_g_ (¢.,_ + ¢_,,Tv),v,,jO_,v,,j] p,v, _,j-
J P,vl,j

rnN 1,j p rlCr raN1, j'Vl,J 2

Analogous equations can easily be written for tile _1boundaries.

Specified Three-Point Pressure Gradient in Notvnal Direction, Vp. n =f

Applying equation (7.12a) of Volume 1 at the _ = 0 boundary', and using three-point one-sided differ-
encing,

@ @ aOu) + A(;_ + AOw)+ A_'7 +

[O O _ o _ o A o Al"4J2, j _A_+_A(pu)+_A(pv)+_A(pw)+_AE_" -
A2,j

[3p Op A _A(fi,v)Op A ,_p ATlnY3,j _ At_+ 0_-_- A(pu) + c'tpv) + _ A(pw) + _ AE A3,j =

2A_ n+l Prgc (_xrlx + _'_,'ly)l,] 0'TPl,J + 3p1'2 4p2, j + P-_,J
rn1,j ,J 2 17lI ,j

Prt_r

where

m = "v + _y

and 5_ is the variably centered difference operator presented in Section 6.0 of Volume 1.
boundary,

At the _ = 1

JN_-2,j [-_P Ap + O@pu) A(/u) Op 1,

ap A(p% + +
4JNI _,,j _p A_) + A(p7) + A(;w) + -_T AET]N 1 -,,j

3J v>] _ A,_ + A(pv) c?p A_.T] n+_ + =

2A: [-rn+l P_gc (¢x_,+ :y'lylx,,j ,5 n 1 n n _ n

',,J 2 rnNl,j tgONl,j -- PN 1 --2,j -t- 4P,Vl --1 ,j 3PNI,jrnN, ,j PrUr J
Analogous equations can easily be written for the _/boundaries.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: BCPRES 87

Linear Extrapolation of Static Pressure

Applying equation (7.14) of Volume 1 at the _ = 0 boundar3,,

ap ap ^7 _+ _ _(;v) + _(_w) A(;w/ -- , -+ OE T AETJI,j

[Op A_+_A(;u) Op A2J2,y -_p OE r _]24 +
+_(_)+_(;w)+ op_7 _

s,,j _,,p + A(2,,I+ _-_ _(pvl+ A(;w)+_ AE =
J3,j

1"1 I1 n

- Pl ,y + 2p_,) - P3,j

At the _ = 1 bounda_ r,

JN, -2,j _ A_ + _ Z_(pU) + A(;v) + _ &(pw) + _ AE -
AN 1--2,j

ap a_ + A(pu) + A(pv) + a(_ A(pw) + _ AE +Z/N_ -1,y Tp _ JNI -l,j

[apA_+ ap _ _ ap ^ ap ^rl_Y'%'J Tp O_pu) A(pu) + A(;v) + _ A(pw) + _ AE =
JN_,j

?1 /1 ?l

- PNI -24 + 2PN_ --l ,y -- PXl,)

Analogous equations can easily be written for the r/boundaries.

No Change From Initial Conditions for Total Pressure, Apr = 0

The total pressure is defined as

y-1) rpr=p I+_----M 2 r-1

Applying equation (7.3) of Volume l, we get

Ji,JFLOpT OpT A aPT A OPT ^ OPT A'_ln_lA_ + _ A(pu) + _ A(pv) + _ A(pw) + _T AE = 0
ji, j

where

88 PROTEUS 2-D Subprograms: BCPRES PROTEUS Programmer's Reference

OPT

Op

OPT OP

3(pu) _(pu)

OPT _ OP

a(pv) O(pv)

OPT _ Op
O(pw) O(pw)

aPT

OE T

Op + Op

I+--_M 2 r-1 +P2 l+---_M 2 70M2
O(pu)

1 + ,142 7-27- + p-_- 1 + :1//2 -_ &tl2O(pv)

cO,l,l2
1 + _ + p z 1 + a(pw)

Op 1 + M 2 y-I Y
OET --7-- + p T z + ---5-M

The Mach number is defined by

M2=
2 v2 w 2u + + (Pu)2+ 002 + (Pw)2

yRT yRp2T

The derivatives OM2/Op, etc,, can then be derived as

OM20p - M2(27- +--Tl OT)op

OM 2 2u M 2 8T

O(pu) YP T O(pu)

OM 2 2v M 2 OT

O(pv) YP T O(pv)

OM 2 2w M 2 OT

O(pw) YP T O(pw)

01_ 2 M 2 OT

OE T TOE T

Specified Total Pressure, PT = ,f

Applying equation (7.5) of Volume 1, we get

[OPT apT ^ apT A Op T ., ^ , . Op T . _ qn4,j A_ q- _ A(ptd) -b _ A(pV) -'[-_ t3(pW} -f- _ _I_T [=L - _'T dad

£n+l Prgc ;;,;" 1+ Y-' M217]
"" 2 / j,,j

where Pr, OPr]OP, etc., are defined above as part of the description of the Apt = 0 boundary condition.

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. An error message is generated and execution is stopped if a non-e:dstent pressure boundary condition
is specified.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: BCPRES 89

,

The multiplying factor p,gc/p,u_ that appears with specified values of pressure and pressure gradients is
necessa_' because input values of pressure are nondimensionalized by the reference pressure
Pr = p,R Tr/gc, while internal to the PROTEUS code itself pressure is nondimensionaliz.ed by the nor-
malizing pressure p, = p,u 7. (See Section 3.1.1 of Volume 2.)

90 PROTEUS 2-D Subprograms: BCPRES PROTEUS Programmer's Reference

Subroutine BCQ (IBC,FBC,IEQ,IM1N,IMAX,IBOUNI))

Called by Calls Purpose

BCGEN BCGRAD Compute conservation variable boundary" conditions.
B(2MI_T

hip.l

* ALIqtA1, AI_PttA2

DF.I_

DXI, I)ETA

IBASE, ISTIiP

IBC, FBC

IBOUND

IEQ

IMIN, IMAX

ISWEEI }

ISWIRL

IV

ll, 12

JI

NC, NXM, NYM, NZM, NEN

* NOUT

Nil }

RIIO, U, V, W, ET

A, B, (7

S

Description

Spatial diffcrcnce centering paramctcrs a, and %, for the { and _1
directions.

Computational grid spacing in sweep direction.

Computational grid spacing A,_ and A_I.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array,.

Boundao, condition types and values for current sweep direction,

specified as IBC(I,J) and FBC(I,J), where I runs from 1 to N,q,
corresponding to the A'_q conditions needed, and J = 1 or 2, cor-
responding to the lower and upper boundaries.

Flag specifying boun&u'y; 1 for lower boundary', 2 for upper
boundary.

Boundary' condition equation number.

Minimum and maximum indices in the sweep direction.

Current ADI sweep number.

Flag for swirl in a:dsymmetric flow.

Index in the "vectorized" direction, &.

Grid indices i and j, in the _ and _ directions.

Inverse Jacobian of the nonorthogonal grid transformation, J 1.

Array indices associated with the continuity, x-momentum,
y-momentum (or r-momentum if a.'dsymmetric), swirl momen-
tum, and energy" equations.

Unit numbcr for standard output.

Cray PAI_,AMETFR specifying the I)IMENSION size in the
direction.

Static density p, velocities u, v, and w, and total energy Er at time
level n.

Coefficient submatrices A, B, and C at boundary IBOUND (row
IEQ only).

Source tem_ subvector S at boundaIy IBOUND (element IEQ
only).

Subroutine BCQ computes coefficients and source terms for conservation wmable boundary conditxons.
The linearized equations for the various general types of boundary' conditions are developed in Section 7.0

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: BCQ 91

of Volume1. Thefollowingsectionsapplythese generalized equations to the particular conservation vari-
able boundary conditions in PROTEUS. 9

No Change From Initial Conditions, AQ = 0

a

Applying equation (7.3) of Volume l, and noting lhat Og/OQ = JOg]OQ, we get simply

A n

Ji,) AQi,) = 0

where Q is the element of 0 for which this boundary condition is to be applied.

Specified Conservation Variable, Q =f

Applying equation (7.5) of Volume 1,

Ji,j AQi,j _,j - Qi,j

Specified Two-Point Comervation Variable Gradient in Coordinate Direction, OQ/Oq_ = f

Applying equation (7.8) of Volume 1 at the _ = 0 boundary', and using two-point one-sided differencing,

An An = A_ n+l n n-Jl,) _XQI,)+ ,6,) AQ2,j ()f_,) + QI,) - Q2,)

At the _ = 1 boundary',

Ar_ At" / /7

-J:¢t -1 ,j AQ.v t -1 ,j + JNt,j AQNI,j = (A_)f/_nl,+! + QN l -1 ,j - Q_gt,J

Analogous equations can easily be written for the _ boundaries.

Specified Three-Point Conservation Variable Gradient in Coordinate Direction, OQ]Oq_ = f

Applying equation (7.8) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differenc-
ing,

% ^n ^n = 2(A_)_ln+l n n n-3J1 ,j AQ1 ,j + 4"]2 j AQ2 j - J3,j dxQ3 y + 3Q1 ,j - 4Q2,j + Q3,j

At the _ = 1 boundary,

Art Atl Art n",[- t tl ?l I'l

JN l --2,j AQN l -2,j -- 4JN_ -1,j &QN 1-1,j + 3JNI, j AQN_,j = 2(A_)f_j,j -- QN l -2,j + 4QN_ -I,j -- 3QNI,j

Analogous equations can easily be written for the _ boundaries.

Specified Two-Point Conservation Variable Gradient in Normal Direction, VQ. n = f

Applying equation (7.12a) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differ-

encing,

In the following description, for the first ADI sweep the dependent variables should have the superscript *, re-
presenting the intermediate solution, and for the second ADI sweep they should have the superscript n, representing
the final solution. For simplicity, however, only the superscript n is used. The superscripts on all other variables
are correct as written.

92 PROTEUS 2-D Subprograms: BCQ PROTEUS Programmer's Reference

where

-Jl ,j AQI,j + J2,j AQ2,j = m 1,j 1,j -- m l,j

i.rt = \/_x +

and b 7 is the variably centered difference operator presented in Section 6.0 of Volume 1. At the _ = 1

boundary,

- + Q>,'ln-l,j Q"

Analogous equations can easily' be written for the q boundaries.

Speci/ied Three-Point Conservation l'ariabh, Gradient in Normal Direction, V() • zi =./"

Applying equation (7.12at of Volume l at the _ = 0 boundary, and using three-point one-sided difl'cr-

cncing,

:' _ ') ?/ :' Yt
--3.I1 ,j AQI ,j + 4.12, j AQ2,j - .13, j AQ3.j =

I_If1':_'- mi'J °nQ"JJ + 3{_, ,:- 4(/, / + Q3,j17Z I
_J

where

r

/_2 2
rn \:_ x + _y

and ,_, is the variably centered difference operator presented in Section 6.0 of \:olumc 1.

boundary,

2A¢

/2"?_' I , J

Analogous equations can easily" be written for the _I boundaries.

Linear [fxtrapolalion of Con.ven, ation l'ariable

Applying equation (7.141) of Volume 1 at the _ = 0 bound:to',

At_ *_q Ay/

J1 ,j AQI ,j -- 2J2,j AQ2,j + J3,j AQLj =

At the c_ = 1 bounda W,

A?l

Analogous equations can easily be written for the _/boundaries.

"I?¢I -2,j A '1 -2,j -- 4J,v I -I ,1 A 'z -1 ,/+ 3"l'Vi,j AQ,vt,j =

(.:x + _:y),_',,i 6,TQ,v,.:_ _ Q,v_-2.: + 4Q_. 1,: -__ V gn+l _" n n

3Q,nVl, j
LJ _'l,J -- PnNI ,j J

-Q*],j + -e2,j Q3,j

= -Q,_. . _ Q.--2,j q- 2Qx_ -1,j NI,j

At the _ = 1

PROTEUS 2-I) Programmer's Reference PROTEUS Subprograms: BCQ 93

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. An error message is generatcd and execution is stopped if a non-e.'dstent conservation variable boundary
condition is specified.

94 PROTEUS 2-D Subprograms: BCQ PROTEUS Programmer's Reference

Subroutine BCSET

Called by Calls

MAIN

Purpose

Set various boundary, condition parameters and flags.

* GBC1, GBC2

* GTBC1, GTBC2

* ISWIRI,

H'I)BC

* JBCI, JBC2

* JTBCI, JTBC2

* KBCI, KBC2

NBC

NEQ

* NOUT

* NTBC

* N'FBCA

* N1, N2

FBCI, FBC2

IBC1, IBC2

IBCELM

IBVUP

JBC 1, JBC2

KBCPER

Surface boundary condition values for the ¢ and r/directions.

Time-dependent surface bounda-r3' condition values for the { and
r/directions.

Flag for swirl in a.,dsymmetric flow.

Flag for time-dependent boundary conditions; 0 if all boundary
conditions are steady, 1 if any general unsteady boundary condi-
tions are used, 2 if only steady and time-periodic boundary con-
ditions are used.

Surface boundary condition types for the _ and _l directions.

Flags for type of time dependency' for boundary conditions in the
and r/directions.

Boundary types for the _ and rt directions.

Cray PARAMETER specifying number of boundary conditions
per equation.

Number of coupled equations being solved, N,q.

Unit number for standard output.

Number of values in tables for general unsteady boundary condi-
tions.

Time levels at which general unsteady boundary conditions are
specified.

Number of grid points N_ and A_, in the ¢ and r/directions.

Point-by-point boundary condition values for the _ and _/ di-
rections.

Point-by-point boundary condition types for the _ and r/ di-
rections.

Flags for elimination of off-diagonal coefficient submatrices re-
suiting from three-point boundary conditions in the _ and r/ di-
rections at either boundary; 0 if elimination is not necessary, 1 if
it is.

Flags for updating boundary values from first sweep after second
sweep; 0 if updating is not necessary, 1 if it is.

Surface boundary condition types for the _ and r/directions (only

if using the KBC recta flags.)

Flags for spatially periodic boundary conditions in the _ and rt
directions; 0 for non-periodic, 1 for periodic.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: BCSET 95

NPT1,NPT2

Description

.\'_and \'2 for non-periodicboundaryconditions,_\1+ 1 :rod
,'\'2+ I lor spatiallyperiodicboundaryconditionsin _and_1-

SubroutineBCSt{Tsetsvariousboundaryconditionparametersandflags.If boun&u3'typesarespec-
ifiedwith theKBCrectaflags,theappropriatesurfaceboundary"conditiontypesareloadedinto the.IBC
arrays.Specialflagsaresetif spatiallyperiodicboundaryconditionsarebeingused.BCSI'TalsosetsNPII
andNPT2,thenumberofgridpointsineachAI)I sweepdirectionto beusedincomputingcoefficientsand
sourceterms.Forspatiallyperiodicboundaryconditionsin the{ direction,NPTI= NI + 1. Similarly,for
spatiallyperiodicboundaryconditionsin the_ldirection,NPT2= N2+ 1. This is donein orderto use
centraldifl'ercncesat the periodic boundary. (See Section 8.2.2 of Volume 1.)

Next, if surface boundary conditions are being specified using the JBC and GBC parameters (or the
KBC recta flags), the appropriate point-by-point boundary condition types and values (the IBC and FBC
parameters) are loaded with the JBC and GBC values.

If three-point boundary conditions are being used at it boundary, a flag is set for eliminating the resulting
off-diagonal coefficient su[m_atrix. If gradient (two-point or three-point) or extrapolation boundary condi-

lions are used dmqng the first sweep, a flag is set for updating the _ boundary vatucs after the second sweep.
The input boundar 3 condition parameters are ttien written to the standard output file.

Remarks

1. :\n error message is generated and execution is stopped if an invalid boundary type is specified with the
K B(7 recta flags.

96 PROTEUS 2-D Subprograms: BCSET PROTEUS Programmer's Reference

Subroutine BCTEMP (IBC,FBC,IEQ,IMIN,IMAX,IBOUND)

Called by Calls Purpose

BCGEN BCGRAD Compute tempcrature boundary conditions.
BCMET

CP, CV

DEL

DTDRIIO, DTDRU, DTDRV,
DTDRW, DTDET

IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

IMIN, IMAX

ISWEEP

ISWIRL

IV

JI

NOUT

NR, NRU, NRV, NRW, NET

P,T

RGAS

RIIO, U, V, W

A,B,C

S

Description

Specific heats G and c, at time level n.

Computational grid spacing in sweep direction.

Derivatives aT/Op, OT/O(pu), OT/O(pv), OT/O(pw), and OT/aE r.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Boundary condition types and values for current sweep direction,

specified as IBC(I,J) and FBC(I,J), where I runs from 1 to N,q,
corresponding to the N,q conditions needed, and J = 1 or 2, cor-
responding to the lower and upper boundaries.

Flag specifying boundary; I for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.

Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Index in the "vectorized" direction, i_.

Inverse Jacobian of the nonorthogonal grid transformation, J-L

Unit number for standard output.

Array indices associated with the dependent variables p, pu, pv,
pw, and Er.

Static pressure p and temperature T at time level n.

Gas constant R.

Static density p, and velocities u, v, and w, at time level n.

Coefficient submatrices A, B, and C at boundary IBOUND (row
IEQ only).

Source term subvector S at boundary" IBOUND (element IEQ
only).

Subroutine BCTEMP computes coefficients and source terms for temperature boundaD" conditions.
The linearized equations for the various general types of boundary conditions are developed in Section 7.0

PROTEUS 2-D Programmer's Reference

:-.... --45_.

PROTEUS Subprograms: BCTEMP 97

of Volume1. The followingsectionsapply'thesegeneralizedequationsto the particulartemperature
boundm7conditionsin PI_,O'II_[_S.1°

:\o Change From Initial Conditions, AT= 0

Applying equation (7.3) of Volume 1, and noting that _?g/#Q = .ISg/OQ, we get simply

+ r'_]_F ,_T ,, 8T _ aT " aT A(pw) aT
.z,.,jL of, A_,+ _- aO,,)+ _ AOv)+ _ _ e, = o

The derivatives 87/?p, 8T/O(pu), etc., depend on the equation of state. They are defined for a perfect gas
in Section 5.3 of Volume 1.

SpeciJ_ed Static Temperature, T = [

Applying equation (7.5) of Vohune 1,

[4Ji, j ¢_7" A;3 + OT . "', c?T _' aT A(p_v) + 0T =fn+l ..,,
-_i,j

Specified Two-Point Temperature Gradient in Coordinate Direction, OT/(?dp = f

Applying equation (7.8) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differencing,

[°OT.,, 0f ..". OT _ OT _ Or Ai 3
-J,,j %-o_.,_+o(-_-;_tp.)+o-Tp-Ve,(ov)+_a(pw)+-b-/7 T]_,+

loT., aT .,_, OT _ aT ", aT _r]_% _ _'P+ -T(7,T_.to.J+ _.',(pv) + _ e,(pw)+ 9-C7as =
2,j

(,_,x_rn+l f n __ .n'-'_tq,j + 1,j 72,j

At the _ = 1 boundary,

f OT aT _' aT ,,_, aT A(p_v),,+ aT _T1n, ,-A-, --"_L%/A_ + _ A(p.)+ O--gb-;f"_P" + _ _ AE +J ,V_- l, j

F 3T A_+ OT ^ OT . A, OT A(p_v3,_,+ OT A3n,,
J,v,,) L _ _ A(pu) + _ zxtpv) + _ _ AE =_I ,Vl,j

_,-n+l T n __ n(A_)JA'_,j + ,v_--l,j T%,j

Analogous equations can easily be written for the rt boundaries.

Specified 77wee-Point Temperature Gradient in Coordinate Direction, 87"[04) = f

Applying equation (7.8) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differenc-

ing,

In the following description, tbr the first ADi sweep the dependent variables should have the superscript *, re-
presenting the intermediate solution, and for the second ADI sweep they should have the superscript n, representing
the final solution. For simplicity, however, only the superscript n is used. The superscripts on all other variables
are correct as written.

98 PROTEL'S 2-D Subprograms: BCTEMP PROTEUS Programmer's Reference

E A A]
aT OT _(pu)+ 07" ,,_,, OT A(pw)+ 8,7" ^ '7 +

[_-]°4j 2 J OT Af5 + fit " 8T A @t A OT AE T _
, _ _ A(..) + _ aO,.)+ _ AOw)+ e&---: -2.j

J3,j

"_A _)_n+l 3T_,j 412, j-.._ ¢__,y + - "_' +T[y

At the _ = 1 boundaw,

[(77 A,,J,v_ -2,j c_p-p Lxp +

[_JL a_ +4J_, 1 -1 ,j _p

],,_rr _7__2a(/;,) + aT A _T _x,':"v. =_._7a/;+ -_ a(/i,) + ,.(+,.) _ a(p,,,)+ _ J,v,,i3lNl,J _?p

..... n+l _ ./.n . .n _ . ,n
2(A_)JNI,j N1 -2,j + 4I,V_ -1,j 3]NI,j

Analogous equations can easily, be written for the r/boundaries.

Specified 7'wo-Point Temperature Gradient in Normal Direction, V T. n = f

Applying equation (7.12a) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differ-
encing,

'-[OTA/_+ OT _ OT A OT _ 8T " [n
-Jl,j L _ _ A(pu) + _ A(pv) + _ A(pw) + 8ET'_jAE +1j

[07" OT A OT ., ^, 3T, ^ 3T A In =

,_¢[.,I?+, (¢x,x+C'_y),.j "] T" ""rnl, j ,J - m_,j 6_T_,) + 1,j- T_,I

where

/" 2 2

m= _,_x+ _y

and 6_ is the variably centcred difference operator presented in Section 6.0 of Volume 1. At the _ = 1
boundary,

aT c_T " aT a(p%)+ OT A" _) _?T _ -In

[er eT A 0r, _, OT ^ _.T _ In =J,",,l -_p A_ + _ A(pu) + _ Atpv) + _ A(pw) + _ AETj,fi, l

a¢ [fl"lq-I -- (¢X'_X hI- Cy'._y)N1, j . '_] T n - T_,,jrnNb j re,V1, j 3,'_N_,I otlTNI,J + -1,l

+

Analogous equations can easily' be written for the _l boundaries.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: BCTEMP 99

Specified Three-Point Temperature Gradient in Normal Direction, VT. n = f

Applying equation (7.12a) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differ-
encing,

I OT .A OT .4 c3T ^ OT ., ^ , OT ^TIn-3s,,: -S;,,p+ 0(-_A(pW+_a(pv/+ 0(-_,,ww)+ aL--_aE +
1,j

[aT .^ aT '" a'I" A aT ^ aT A] n -
4.12. j _ tap + _ A(pu) + _ A(pv) + _ A(pw) + _ AETj2. j

I OT.^ aT .,A, aT " aT " aT "v]"J3,j _ "p + _ "tp_ + _ A(p0+ _ A(pw)+ _ _E =
J3,j

2A_ If n+. (_x_tx+_Y'Ty)'.J 6,TT_.jI+gT_.)_4T_j+ T_njml,j 'J -- ml,j

where

and 6_ is the variably centered difference operator presented in Section 6.0 of Volume 1. At the _ = I
boundaD',

JN I --2,j A_ + _ A(pu) -1- _ l.._[,pV) + _ A(pw) -F A
T AN l -2,j

[OT . ^ OT . . ^ , 3T ^ OT . . ^ , OT AT]n
4JNI--[,J _/._p AI_ _ /_p.) Af- _ A(p'V) "[- _/-_[OW_ "t- (_E-'--T- AE N, -l,J

OT ^
aT . ^ aT ., ^ . 8T ^ OT ., ^ . +__ AET] =

2a_ F_.+_ (¢_,1_+ Cy.lpu,,j . -] .

rant, j LJN,,./ -- raN,. j 6nT_It, jJ - T},-2,j + 47_N, -l,j- 3V'_t,j

+

Analogous equations can easily be written for the r/boundaries.

Linear Extrapolation of Static Temperature

Applying equation (7.14) of Volume 1 at the _ = 0 boundary,

A -] _aT OT A(pu) + OT ,, ^, aT ^ aT " '_

z+2+F aT a_+ aT _ OT ,,_, aT ^ eT . _ -1_
L ap a(-(;ga(p,,)+ _ "w_)+ _ _(pw)+ _ ,,LTj_,;+

[__p aT ^ aT ^ aT ^ aT . _]" =j_,i aT a,_ + _ 6(pu) + _ A(m') + a(-gG_a(pw) + OE----TA_TJ3,;

-- T B 11

At the ¢ = 1 boundary.

1_ PROTEUS 2-D Subprograms: BCTE.MP PROTEUS Programmer's Reference

[(?T A_ + A(nu} + A(pv) + A(pB') + -- A_:'T --
J,v,-2,j L _ _ _ -c_ 'OI".T J.V,-2,j

T[_7 A_+ ,_T A(,;',,)+_ A¢,,)+ -c_,/±A_,;2,,)+,rr Ai"_, +

"l'\'l'J L Op _(pl,) _ A(p)') + _([7_'[+ I.?12_ j NI,j

_ T,_ -_7-n , .n
•\'i--2,J + " N 1-1,j-]VI,j

Analogous equations can easily be written for the r/boundaries.

No Change From Initial C(mditions for Total Temperature, A 7": = 0

The total temperature is defined as

()y-I
TT= J 1 4--_2-- "112

Applying equation (7.3) of Volume 1, we get

"I'T '77"7" _' (_'TT.Ii, j -- A/'; + _ &(pz,') + A(pv)

where

? T T ,1 n

ji,j

y- l .._'_ y- 1 &l/2c,r_ _ eT' 1+_T_" _,,', + .1 c?_-Op dp /

dTT OT (1+ Y- I) Y-1 &112(T)(pu) (_t(pu) _--- "112 + ---_-- T 0(pU)

(?TT = O7--(l+__M2)+(?(pr) a(pv)

©(pw) c_(pw) 1 + T M 2 + 7" a(pw)

(?77-
7- 1 .-)'_ y- I 7" 8512

07"
1

+ _ ,ll-} 2 {?t¢7_
+

(}£T _EI"

The Mach number is defined by

,112 =
2 !2u + + w 2

pRT

(pu) 2 + (pv) 2 + (pw) 2

yRp2T

The derivatives &U:/Op, etc., can then be derived as

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: BCTEMP 101

OM 2 M 2(2Op - --_ 4

c_._l2 2u M 2

T Op

OT

0.112 2v M 2 OT

O(pv) 7P T 8(pv)

0M 2 2w M 2 07"

O(pw) 7P T a(pw)

&_l 2 m 2 8T

@ET T _E T

Specified Total Temperature, T r = f

Applying equation (7.5) of Volume 1, we get

I dtT T aT T A @TT A 3T T ^ aT T -_ InJi,j _ A_ + _ A(p.) + _ A(pv) + _ A(pw) + _ a/ZTI =
'-'T lid

(' oc _' - TT,j 1+ _ -' ,U2_
"_,s 2 " .,/i,j

where Tr, OTT/Op, etc., are defmed above as part of the description of the ATr = 0 boundary condition.

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. An error message is generated and execution is stopped if a non-existent temperature boundary condi-
tion is specified.

102 PROTEUS 2-D Subprograms: BCTEMP PROTEUS Programmer's Reference

SubroutineBCUVEL(IBC,FBC,1EQ,IMIN,1MAX,IBOUND)

Calledby Calls Purpose
BCGEN BCGRAD Computex-velocity bounds' conditions.

BCMET

DEL

1BASE, ISTEP

IBC, FBC

IBOUND

I.MI N, IMAX

ISWEEP

IV

JI

* NOUT

NR, NRU

RIIO, U

A,B,C

S

Description

Computational grid spacing in sweep direction.

Base index and multiplication factor used in computing one-

dimensional index for two-dimensional array.

Boundary condition types and values for current sweep direction,

specified as 1BC(I,J) and FBC(I,J), where I runs from 1 to N,q,

corresponding to the N,q conditions needed, and J = 1 or 2, cor-
responding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundar)', 2 for upper

boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.

Current ADI sweep number.

Index in the "vectorized" direction, i_.

Inverse Jacobian of the nonorthogonal grid transformation, j-t.

Unit number for standard output.

Array indices associated with the dependent variables p and pu.

Static density p and velocity u at time level n.

Coefficient submatrices A, B, and C at boundar3' IBOUND (row

1EQ only).

Source term subvector S at boundary IBOUND (element IEQ

only).

Subroutine BCUVEL computes coefficients and source terms for x-velocity boundars conditions. The

linearized equations for the various general types of boundary conditions are developed in Section 7.0 of

Volume 1. The following sections apply these generalized equations to the particular x-velocity boundary
conditions in PROTEUS. It

In the following description, for the first ADI sweep the dependent variables should have the superscript *, re-
presenting the intermediate solution, and for the second AD! sweep they should have the superscript n, representing
the final solution. For simplicity, however, only the superscript n is used. The superscripts on all other variables
are correct as written.

PROTEUS 2-1) Programmer's Reference PROTEUS Subprograms: BCU'VEL 103

Xo Change From Initial Condition_, Au = 0

Applying equation (7.3) of Volume 1, and noting that ?.g/SQ = J8g/OQ, we get simply

=0

S m'ci/_ed x- |"eIocitv, u = f

Applying equation (7.5) of Volume 1,

u zX_ 1 zX(pu) ,,; - uij

Spcc!/'ted Two-Point x-Velocity Gradient in Coordinate Direction, 8u/_b = t"

Applying equation (7.8) of Volume 1 at the _ = 0 boundary', and using two-point one-sided differencing,

u zx_ + 1 zx(pu) + J2,/ - 7- Ap + zx(pu) 2,/-Jr,/ - --fi- -fi- l ,j

At the _ = 1 boundary,

u., l A(pu) + u I
--'IA', -1 ,j -- p- At) + -p- A,'t --l,j JNl'J -- _ A_ + _ A(pU) NI,J =

A _'_g n+l n n
Lx,_ u ,V1, j + bl,'s;1 --I,j -- UNI, j

Analogous equations can easily bc written for the r/boundaries.

Specified Three- Point x- Velocity Gradient in Coordinate Direction, Ou[Oqa = f

Applying equation (7.8) of Volume 1 at the _ = 0 boundary, and using three-point one-sided diffcrenc-
ing,

-3Jl, j ----_- Ap +--_- -Jl,j 2,j--

_ =2(A_)fln I +3u l'j 4u2, J+u3,j
"I3,j --fi- Ap q.- A(pu) 3,j

At the _ = I boundary,

" _ u A 1 a(pu) +
u 1 A(pu) - 4JN, -1 ,j -- -fi-Ap + --p-- -1,j/N I-2,j -- -p--A_ -}- _O-- N l --2,j N 1

_ = 2(A_cn+l n n - 3 nu 1 A(pu) _ "_)JNI,j -2,j + 4UN1-l,j tdNl,j3JN,,J 7- A_ + 7- '_"l.J -- u_,]

Analogous equations can easily be written for the _ boundaries.

Specified Two-Point x- Velocity Gradient in Normal Direction, Vu. n = f

Applying equation (7.12a) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differ-

encing,

104 PROTEUS 2-D Subprograms: BCLNEL PROTEUS Programmer's Reference

- : ,,;+4 A(L)]u 1 A(pu) + J2,j _ =-Jt,j - -d- A_ + 7- l,j e .J2,;

-- O_TUl,j + Ul,j- U2,jml d 'J ml,/

where

and 5_ is the variably centered difference operator presented in Section 6.0 of Volume 1. At the _ = 1

boundary,

^ n u ,, 1 A(pu) =1 a(pu) + J,v_,j - 7 Ap + --/-J_, __,; - _ a_ + 7- ,,,',-_,+ ,v,,+

a¢ [,._+_ (G,_+¢yuy)x,.; .] . _ nmN_,j m%,jJNI,j 6,Tu,v_,j + U,V1 --l,j uN_,j

Analogous equations can easily be written for the rt boundaries.

Specified Three-Point x- Velocit e Gradient in Normal Direction, Vu • n = f

Applying equation (7.12a) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differ-

encing,

_ u A_,+ I Mpu)l A(pu) + 4.12, j -_- -_--3J1. j -- + A_ + -_- 1,j :,j --

J3,j[--+A_ +_l A(pu)^]n3,j_ ml,j2&'Ifln+l'J -- (_xqx+'yqy)l'J ¢SqUT'J]-kml,j

n n

3u_,j - 4u2,) + U3, j

where

and 6, is the variably centered difference operator presented in Section 6.0 of Volume 1. At the _ = 1
boundary,

u a_ + a(pu) +u A_+ A(pu) --4JN l-l,j ----fi-JN l -2,j -- "_ ,Vl -2,j Nt -1,j

I + ^ in 2A{ ["fn+, (_x_/x+_Yrt-r)N,,J n]U A# + A(pU) = [fNl,j -- 617tgvt,j --3JNl,j -- --if- Nl,j mNl,j mN_,j

rt rl t"l

UNl -2,j + 4UN 1-1,j -- 3UNI,j

Analogous equations can easily be written for the _/boundaries.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: BCUVEL 105

Linear Extrapolation of x-Velocity

Applying equation (7.14) of Volume 1 at the { = 0 boundary,

u A_ + A(pu) +- - --2,jYt,j -7- up + A(pu) 1,j 24

[uN' 1 "]a,13, j 77 p +-T A(pu) = - u 1,j + ,.u2, j-u3, j
3,j

At the _ = 1 boundary,

- a_ + a(pu)
Y,v_-2,j - 7- Ap + zX(pu) _"_-2,y _x_ -1,y - 7- 7- ,;___,y

Jx_,j - _ Ap + _- A(pu)_j._,l,j -- u'v_-2,y + 2uN_-t,y - UN_,j

Analogous equations can easily be writlen for the _1boundaries.

Remarks

1.

2.

+

"l]ais subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

An error message is generated and execution is stopped if a non-existent x-velocity boundary condition
is specified.

106 PROTEUS 2-D Subprograms: BCLNEL PROTEUS Programmer's Reference

Subroutine BCVD1R (IBC,FBC,IEQ,IMIN,IMAX,IBOUND)

Called by Calls Purpose

'BCGEN BCGRAD Compute normal and tangential velocity boundaD" conditions.
BCMET

* AI,PIIA1, AI PttA2

I)EI.

l)Xl, DETA

IBASF,, ISTEP

IBC, I:BC

IBOUND

n_o

IMIN, IMAX

ISWEEI'

* ISWIRL

IV

I1, 12

JI

MF, TX, METY

* NOUT

NP,, NRU, NRV, NRW

N 1P

RIIO, U,V,W

A,B,C

Spatial difference centcring parameters _ and .:q, for the { and
directions.

Computation',d grid spacing in sweep direction.

Computational grid spacing A_ and Aq.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Boundary condition types and values for current sweep direction,

specified as IBC(I,J) and FBC(I,J), where I runs from 1 to .._;q,

corresponding to the N,q conditions needed, and J = 1 or 2, cor-
responding to the lower and upper boundaries.

Flag specifying boundary'; 1 for lower boundary', 2 for upper

boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.

Current AI)I sweep number.

Flag for swirl in axisymmetric flow.

Index in the "vectorized" direction,/_.

Grid indices i and j, in the { and v/directions.

Inverse Jacobian of the nonorthogonal grid transformation, J-_.

Derivatives of sweep direction computational coordinate with re-

spect Io x and y (or r if a,'dsymmetric.)

Unit number for standard output.

Array indices associated with the dependent variables p, pu, pv,
and pw.

Cray PARAMETER specifying the DIMENSION size in the
direction.

Static density p, and velocities u, v, and w, at time level n.

Coefficient submatrices A, B, and C at boundary' IBOUND (row

IEQ only).

Source term subvector S at boundary' IBOUND (element IEQ

only).

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: BCVDIR 107

Description

Subroutine BCVDIR computes coefficients and source terms for normal and tangential velocity

boundary conditions. The linearized equations for the various general types of boundary conditions are

developed in Section 7.0 of Volume 1. The following sections apply these generalkzed equations to the

particular normal and tangential velocity boundary conditions in PROTEUS. z2

Specified Normal Velocity, II",=f

The normal velocity is defined as

where n is the unit vector normal to the boundary. For a _ boundary,

_ i 7 1 7
n = IV_----_=-_-G +-_-_y

where

Therefore, for a _ boundary,

Similarly, for an rt boundary,

where

1
V n = --_ (¢x u + _yv) =f

1
l,"n = _ (_Ixu + vlyv) = f

2 2
m-._ _2_x+_y

Applying equation (7.5) of Volume 1, the linearized boundary condition at a ¢ boundary becomes

Ji, j [_x_+ _yv A_ + _x ^ _Y ^]n gn+l nmi,j p ---7 A(pu) + _ A(pv) i,) --,t,y -- (Vn)i,j

An analogous equation can easily be written for the q boundaries.

l_ In the following description, for the first ADI sweep the dependent variables should have the superscript *, re-
presenting the intermediate solution, and for the second ADI sweep they should have the superscript n, representing
the final solution. For simplicity, however, only the superscript n is used. The superscripts on all other variables
are correct as written.

108 PROTEUS 2-D Subprograms: BCVDIR PROTEUS Programmer's Reference

Specified Two-Point Normal Velocitr Gradient in Coordinate Direction, 01_]0_ = f

Applying equation (7.8) of Volume 1 at the _ = 0 boundary, and using two-point one-'sided differencing,

+
ml ,; p "-7 A(pu) + -7- A(pv) 1,y

J2,J I _xU+ _YV A_ + _x _, _y A In =
m2, j P --7 A(pu) + _ A(pv)__12, j

n+l rl

(A;)_,j + (v_)l,;- (G)_,;

At the _ = 1 boundary,

_xt1+ _yV A_) + _x A _y A 1 n

p ---#-_(pu) + 7- A(pv)A,v_-_,y

_xu+ _vv _,_ A _, A I n =
P " Ap +_A(pu) +_(pv) ml,J

(A_X fn+l / n n

_S))Nt, j + (]_n),V I-l,j- (Vn)Nl,j

+

Analogous equations can easily be written for the _/boundaries.

Specified Three-Point Normal Velocity Gradient in Coordinate Direction, O l/_!O_ =f

Applying equation (7.8) of Volume i at the { = 0 boundary, and using three-point one-sided differenc-

ing,

-3 J1,.___)[ml ,j

4 J2,____jIm2,j

J3,j Im3,j

_u + _yV_x_+ G " Cy _ 1 _p 7- A(pu) + -7 _X(pv) +
1,j

L,u + _yV/"_ + _,_ A _y ,, _'_p -#- _x(pu)+ 7- _(pv) -
2,j

p --#- a(pu) + --_ a(pv) =
3,j

2(A_)fln, j+' + 3(Vn)7,j- 4(Vn)_, j + (Vn)_,)

At the _ = 1 boundary,

J,_]-2,j [_x umN_ -2,j

JVI -l'J f _xUmN z-1,j

p + -7 A(pu) + _-- A(pv) _"q--2,j

p + --7 A(pu) + -7 A(pV) +
Ns -1,j

p a_ + --7- a(pu) + 7- AOv)_,,v,,j =

I'1 -- V 1.1- (Vn)ua-2,j + 4(Vn)_r t-_,j 3(n)&,j

3 JN_,j [runs, j

2gAX_f n+l

Analogous equations can easily be written for the _ boundaries.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: BCVDIR 109

Specified Two-Point Normal Velocity Gradient in Nor,nal Direction, V Vn• n =f

Applying equation (7.12a) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differ-

encing,

Jl,j Gu + ?, A/; + _(_) + -7- a(pv) +
rnl 'J P l,j

J2,j [_xU+ _y v _: A {y A In

At L"F'n+I (_.e,_ + cy,,y)l.; a_(G)_, -]j (_5)7,j-rn_,j ,J -- m 1,j
+

where 6. is the variably centered difference operator presented in Section 6.0 of Volume i.
boundary,

At the _ = 1

JN t,j

mN 1, j

Gu+¢zA#+ G ^ *y ^ I n-. p -y- a(pu) + 7- a(p_,) +
N_ -1,j

I _xU+_YV AP+ _x A _y ^ inP -7- a(pu) + -7- a(pv) U,,j =

A_ rt,,i2+l -- (¢XnX "_ _ylJy)e_rl,j n .] n 7 t'1

rnu_' J L mN_,j][JNt,j oq(rn)Nt, J + (Vn)N t-l,j- (l'n)Nl, j

Analogous equations can easily bc writtcn for the r1 boundaries.

Specified Three-Point Normal Velocity Gradient in Normal Direction, VV.. n =f

Applying equation (7.12a) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differ-
encing,

Jl ,)

-" ml,--7[

J2,j

[

J3,j Itn3 , j

rnl ,j ,J -

¢xu + _yV A_ + _- A(;u) CY ^ -In
p + --y- A(pv)j l,j +

_xu+_yv p, __ 'Y ^ T'p Ap + A(;u) + -7 A(pv) -
_12,j

¢_ + cP a_ + a(_) + -7- a(pO =
P 3,j

ml, j 6n(Vn)l,J] + 3(Vn)_'J-4(Vn)2'j+(Vn)3'J

where 6, is the variably' centered difference operator presented in Section 6.0 of Volume 1. At the _ = 1
boundary',

Ii0 PROTEUS 2-D Subprograms: BCVDIR PROTEUS Programmer's Reference

3--J:vl'/ I
m NI ' Y

p 7- a(p.) + T a(pv) ,, -2.i

L,u+_,,va_+ L, ,` ey ,`]_p -U a(pu) + -7 a(pv) ,v, -_,;

1Gu + _yv a_ + G ,` _y ,, n
p --y- A(pu) + --y- ei(pv) ,v_,j=

+

2A{ [-,-n+l _ (G'Tx___+;y_y),v,,y . E "..] - n
m,vl, j mN_, j J_x,,i %(.),_,.j (G)N, -2.; + 4(V,,),v' __,;

Analogous equations can easily be written for the q boundaries.

Linear Extrapolation of Normal Velocity

Applying equation (7.14) of Volume 1 at the { = 0 boundary,

Jl,j

ml,j

24,_1__
m2,j

J3,y

rn3,j

p + + -7- a(pv)J t,y'-

[Gu+_P'a_-_-A(;u) _y "-inp + + _ A(pv)J2,y +

Gu+_yva_+ G ,` _y ^ -Pp 7- A(p.)+-7 a(pv)j , =
-(Vn)_, j + 2(Vn)_,j- (Vn)_, j

At the _ = 1 boundary,

JNI-2'J [
mN 1 -2,j

JN I ,j

mN 1, j

Gu + _yv a_ + G ,` _y ^]"p -p- a(pu) + --y-a(pv) N, -2,y

[Gu+Gva_ G " _, ^]_p + --'fi--- m(pu) "{- "-7 t_k(p;,') NI -1 ,j

- (G),_,-2,; + 2(v_),_,__,;- (v.),_,,j

+

Analogous equations can easily be written for the q boundaries.

Specified Tangential Veloci(y, V, =.f

t-or a _ boundary., the tangential velocity is defmed as

Vt = % + W 2

where V., the velocity in the r/direction, is defined as

V_ = N/12 2 +V 2- V 2

1
= _ (- _yU+ G0

and

- 3(Vn)_nv,,j

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: BCVDIR 111

'lhcrctbre,tbr a _boundary',

Similarly,for an)1boundary,

V_hcro

/._-2g .2
m = \/Cx + gy

1
[/r = 337 [(- _.vu + _xv)2 + m2w2] 1/2

V - _,- ,n [01,,"-)7_)2 + "?w2] _/2

2m = _,/)i + _ly

At,pl) ing cqualion (7.5) of Volume 1, the lmearized boundary condition at a _ boundary' becomes

.1 /7"t . -_ A A

.... t ,7--_ A(pu) + I_'7_-- A(pv) + m -p- A(pw) ="+J; _,J _F(.).,_+w2)A _ _ _y -, ¢_ w A
i,j

fn+l z re.i,/ - (_ t)ij

An analogous equation cam easily be written for the r/boundaries.

£))_icd Two-f'oint Tanx_ential ["elocity Gradient in Coordinate l)irection, 0 V,/c?c_ = [

At_I>l) ing equation (7.8) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differencing,

()[]",,;i7 ,,j - T (_ + - A- --fi-A(pu)+),7-7-A(pv)+rnw _l,j

()[.3,77 2,: _ (+ - % 7- a(,,u)+ % -y- _,_,,v)+ ,,,7- a(,:,w) =
-'2,j

_n-I-I z n • n

At the _ = 1 boundar;y

()" [J m 72 2 _ A A- -- - w)"0 CY ¢_ w _'
'")"_ ,v,-_,j 7([" + - v'--Y-a(Pu) + v_-Y-a(P_) + mT-aOw) x,-_,j

()"[]".I m ,2 w2)_X_ Cy A
,,,t--7 x,,: -7-()"7 + -)%7--a(p,_)+ a()+,,,_a(pw) =

JNI,j
_._n+l , n n

(A,,)ti,..>j + ((V,),v,, Jl/r) ,vI - _,./-

+

Ana[ogous equations can easily be written for the r/boundaries.

S_ified Three-Point Tangential Velocity Gradient in Coordinate Direction, O V,/Oqa =.f

Applying equation (7.8) of Volume 1 at the { = 0 boundary, and using three-point one-sided differenc-
ing,

112 I'ROTEUS 2-D Subprograms: BCVDIR PROTEUS Programmer's Reference

J n m (//,2 w2)A_ _Y _x ^ w-3 ---y-,__ + - G--Ta(pu) + G--y- a(p_')+ m-h- a(pw) +
l,j -Jl,j

m .2 w2)a_ ¢, A G A w
-- ----p- (l,r/ + -- l_rl ---_- A(pu) + VrI---_ A(pv) + m--_ A(pw) --

4 m[,t 2,j 2,j

- -p- (V_+m 2 w2)A_ _ Vn_h__ A(pu) + Vn --p-- A(pv) + m -_- A(;w)
3,j --a3,j

2(A¢)fl n+l + 3(" n _ n, It)l,j 4(Vt)2,j + (Vt)_,j

At the _ = 1 boundary,

?I

J m (Vn2+ w2)A_ A(pu) + A<;v) + m p A(pw)
N, --2,j -- _- -- rv/"-'fi- 5,'1 --2,j

tl

4("_Vt) n [m (V:+w2)Ap _Y ^ ___ ^]N, -,,j - --b- - V. --F- a(pu) + lq a(pv) + m _- A(pw) _, -1,j

(.l)n[m ,y^ _ ^in3 _ xt.J -_-(Vq 2+w2)A_- i%-TA(pu)+ V,7 A(;v)+mpA(pw) =
-J N1, j

2(A¢)fA;n_,+) - (Vt)_/1 -2,j q- 4(Vt)_,' -1 ,j- 3(Vl)nNl,j

+

Analogous equations can easily be written for the _/boundaries.

Specified Two-Point Tangential Velocity Gradient in Normal Direction, V Vt. n =.f

Applying equation (7.12a) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differ-
encing,

().[w "7"J m 2 w2)a_ a(;v) + m --fi-A(pw) +- _ ,,; --¢-(v_+ - G-Ta(pu)+
-%1

2,j ---fi-(V_ + - Vu _- A(pu)+ A(;v)+ m--j-A(pw) =
_2,j

ml,j .j -- ml,j 6,7(Vt)l. j q- (Vt)l, j- (Vt)2, j

where e3_is the variably centered difference operator presented in Section 6.0 of Volume 1. At the _ = 1
boundary,

tl

Nl--l,J -"-fi-(V_ q- - Vrl--fi-- A(pu) + V_7 A(;v) + m---fi--A(pw) NI--I,J

m w2)a_ , _y . w ^
N,,I ---fi--(V_+ - I_7--p--A(pu)+ A(;v)+m---fi-A(pw) =

N], j

__a_ Vc.+, _ (G._ + _y,l),)x,.jG(G)x.j-]" + (v,)u,"_,.j - (v"t) Nl,j
m NI ' j m NI ' j 1JNI, j

+

Analogous equations can easily be written for the _/boundaries.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: BCVDIR 113

Specified Three-Point Tangential Velocity Gradient in Normal Direction, V l/_. n =f

Applying equation (7.12a) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differ-

encing,

J ,n ,2 w2)a;; _ ' _ " _ m w a(pw) +
-3 ,._._ _; -7(_. + - a(P")+f'.T-a(P_')+ 7- _,i

- w-)ap , G _
4 _ 2 j T- (_ ,, + - _. T- a(.,,) + G a(p,,) +., _- a(p'k,) -

• , -_2,j

(j)n [,n ,2 ,,,2)A _ I'_ _y A , _x _' w _ lml----_-t 3,j - --if- ([r/+ 7A(PU)+ I'_-A(Pv)+m_-A(pw)j3. j

m,,; _,J ,nlj G(v')_,J + 3(v_)_,;- 4(v,)_,j + (_',)3,j

where 6, is the variably centered difference operator presented in Section 6.0 of Volume 1. At the { = 1
boundary,

([J tn .2 w2)A/_ _Y _x A W

4 ..--ST, x, -,,j - T- (G + - v. -7 a(p_) + v. 7 a(pO + m -7 a(pw) _v,-_.j

(J m w2)A_ {y _x '_ w
3 _ N,,: ---7(1/2+ - Vrl--d-A(PU)+ Zn--fi--A(Pv)+m--d-A(PW) =_a,v_, j

2A_

mNbj

+

Ln+, (G.l_ + 7
6.(v,)_. j] - (V,)2_ 2j + 4(V,)2/__1,; - 3(v,),_,,j

-- LYNI,J -- m,% J d l - ,

Analogous equations can easily be written for the _7boundaries.

Linear Extrapolation of Tangential Velocity

Applying equation (7.14) of Volume 1 at the _ = 0 boundary,

,; - -7 - G T- a(P)+ G -7 a(_)÷ m 7-a(pw) -

2 m_-----T'l2,y -p(V2+w2)A_-V,_TA(pu)+V_rTA(pv)+mTA(v) 2,j+

(lJ m w2)a_ a() v. T- a(_) + m _- a(_w)
--'Lj

,, rl ,"/- (_,h,; + 2(G)_,j - (v,)U

At the _ = 1 boundary,

114 PROTEUS 2-D Subprograms: BCVDIR PROTEUS Programmer's Reference

+

Analogousequationscaneasilybewrittenfor the_lboundaries.

Remarks

1. This subroutine uses one-dimension,'fl addressing of two-dimensional arrays, as described in Section 2.3.

2. An error message is generated and execution is stopped if a non-e.,dstent normal or tangential velocity
boundaw condition is specified.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: BCVDIR 115

SubroutineBC_WEL (IBC,FBC,IEQ,IMIN,IMAX.IBOUND)

Called by Calls Purpose

BCGEN BCGRAD Compute y or r-velocity boundary conditions.
BCMET

DEL

IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

IM|N, IMAX

ISWEEP

IV

JI

* NOUT

NR, NRU, NRV

RtlO, U, V

A,B,C

Description

Computational grid spacing in sweep direction.

Base index and multiplication factor used in computing one-
dimensional hldex for two-dimensional array.

Boundary condition types and values for current sweep direction,

specified as IBC(I,J) and FBC(IJ), where I runs from 1 to Ne_,

corresponding to the N,q conditions needed, and J = 1 or 2, cor-
responding to the lower and upper boundaries.

Flag specifying boundary; 1 for lowcr boundary,, 2 for upper
boundary.

Boundary' condition equation number.

Minimum and maximum indices in the sweep direction.

Current ADI sweep number.

Index in the "vectorized" direction, i_.

Inverse Jacobian of the nonorthogonal grid transformation, Y _.

[;nit number for standard output.

Array indices associated with the dependent variables p, pu, and

pv.

Static density p, and velocities u and v, at time level n.

Coefficient submatrices A, B, and C at boundary IBOUND (row
IEQ only).

Source term subvector S at boundary' IBOUND (element IEQ
only).

Subroutine BCVVEL computes coefficients and source terms for y or r-velocity boundary, conditions.
The linearized equations for the various general types of boundary conditions are developed in Section 7.0

of Volume 1. The following sections apply these generalized equations to the particular y or r-velocity

boundary conditions in PROTEUS. n

n In the following description, for the first ADI sweep the dependent variables should have the superscript *, re-
presenting the intermediate solution, and for the second ADI sweep they should have the superscript n, representing
the final solution. For simplicity, however, only the superscript n is used. The superscripts on all other variables
are correct as written.

116 PROTEUS 2-D Subprograms: BCXWEL PROTEUS Programmer's Reference

No Change From Initial Conditions, Av= 0

Applying equation (7.3) of Volume 1, and noting that Og/OQ = .lOg/dQ, we get simply

v A/_+ 1 A(OV) =0
Y;,J - 7- 7- ;,j

Specified.? or r- IZelocit.y, v =/"

Applying equation (7.5) of Volume 1,

[V fn+l _ vn.
&,J - 7- a_ + a(pv) ;,J =-';,i ,,+

Specified Two-Point y or r- Velocity Gradient in Coordinate Direction, (?v ?._ =_

Applying equation (7.8) of Volume 1 at the _:= 0 boundau, and using two-point one-sided di[t'crencin,a,

[÷] [';_ v ._ 1 A(pv) =_ v _ +j2,j _7-,,p+7--Jl,j 7- Ap + A(pv) 1,j 2,j

(A_:, fn+l n n

L_)j],j q- V],j -- V2, j

At the { = 1 boundary,

v A)+ 1 ,, n v A)+ 1 A(pv) =-
-- + JNI'J -- _ 7- _ ,V>j--'IN, -I ,j _ -_- A(pV) N1 --1,j

}J.VI,j hi- VN 1 -1,j -- VNI,j

Analogous equations can easily be written for the r/boundaries.

Specified Three-Point y or r- Velocity Gradient in Coordinate Direction. &'/3d? = f

Applying equation (7.8) of Volume 1 at the { = 0 boundary, and using three-point one-sided differenc-
ing,

[] [v A_+ 1 A(pv) +4J2J -7- 7-3Jl'J - 7- 7- 1,j ' 2,j

[^In = ,_ n+l n nJ3,j -7-v A_ + 7-1 A(pv) 3,j 2(A_)fI'J + 3v_j, -- 4v2, j + v3, j

At the { = 1 boundaw,

[] [v ^ 1 ^ n _ v A_+ 1 A(pv) +
iN, -2,j -- 7- Ap + -_ A(pv) - 4J,v_ -1,j -fi- 7- -l,j

N 1 --2, j "¢1

IVA1 ^In n+l n n n3J?,],j -- 7 Ap + 7- A(pv) :vt,J -- 2(A_)f_,,j - VN, -2,j + 4VNI -l,j -- 3vN>j

Analogous equations can easily be written for the _/boundaries.

Specified Two-Point y or r-Velocity Gradient in Normal Direction, Vv. n = f

Applying equation (7.12a) of Volume 1 at the _ = 0 boundary', and using two-point one-sided differ-

encing,

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: BCVVEL 117

[[_v A A]nv ! A(pv) + J2,; T At, + A(pv) =-J_,; - T a_ + _- _,2 2,2

A_ [A_+, (_x,Tx+_y'_v),j _] v, _ _@.j ,j - ml,) 6,Tvt,/ + 14 v2,j

where

and ,5. is the variably centered difference operator presented in Section 6.0 of Volume 1. At the _ = 1

boundary,

v 1 A(pv) =
r Ap "}'- I A(p'g) + JNl,j -- _ _kp "+--Ju_ -1,y -- -#- _ ,v_ -l,j ,vt,j

rnN I ,j mNl ,j "J VN) --NI,j OrlVNl,l + --I,j VNI,J

Analogous equations can easily be written for the rt boundaries.

Specified Three-Point y or r- Velocity Gradient in Normal Direction, Vv • n = f

Applying equation (7.12a) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differ-

encing,

_3Jl,j _--fi--vA_ +7l A(pV) l,j+ 4j2'2 -- pA_+ 2i(pv) 2,j

v 1 A(pV) ,J ' 6,v'],j +44 - -?--a_ + -#- 3,i -- "),---7 m_,j

3v7, j n n-- 4v2, j + v3,)

where

and 6, is the variably centered difference operator presented in Section 6.0 of Volume 1. At the _ = 1
boundary,

[[v 1 A(pv) +
1 A(pv) - 4JN l -1,j -- ---if-A_ + -fi-- -1,jJN 1 -2,j -- _ A; + "-'fi-- U 1 --2,j N 1

3Jv L,J - --fi-Ap + A(pv) N_,j = mN,,------j mN l,j. Nl, j -- 6,TvNI,j --

17 n rl

VNl -2,j + 4VN1-1 ,j -- 3V,gl,j

Analogous equations can easily be written for the _ boundaries.

118 PROTEUS 2-D Subprograms: BC%WEL PROTEUS Programmer's Reference

Linear Extrapolation of y or r- Velocity

Applying equation (7.14) of Volume 1 at the _ = 0 boundao',

[[V A i Z_(pV) 2J2, j - -_ Lxp 4- @ A(pv) 2,jJl,j -TAP+7 _,J - v . A +

[v ,, 1 " In =_v n _ nJ3,j - _ Ap + A(pv) 3,j 1,j + 2v2,j- v3,j

At the _ = 1 boundary,

_ v 1 A(pv) +
JN 1 -2,j -- _ Ap At- A(pl,') NI -2,j _,V 1 -1 ,j -- -_- Ap 4- _- N 1 -l,j

JNI,j -- _ Ap q- A(pv) '\'l,J -- v'vl -2,j 4- 2VNI--1,j -- VA'j,j

Analogous equations can easily be written for the _/boundaries.

Specified t'7ow Angle, tan-_(v/u) =f

This boundary condition can be rewritten as

v tanf--h-=

where fis the specified flow angle. Multiplying by pu,

(tanf)pu- pv = 0

Applying equation (7.5) of Volume 1 to the above equation, we get

tan f)i, j A(ouli, j - A(pv)i,j] = -- (tanf)i,j + (pv)in)

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. An error message is generated and execution is stopped if a non-existent y-velocity boundary condition
is specified.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: BCVVEL 119

Subroutine 13CWVEL (IBC,FBC,IFQ,INIIN,IMAX,IBOUND)

Called bv Calls Purpose

BCGEN Compute swirl velocity boundary, conditions.BCGRAD

BCMET

l._ep_m

DEI,

IBASE, ISTEP

IBC, FBC

IBOUNI)

IEQ

IMIN, IMAX

ISWI_I£P

IV

JI

NOU'I"

NR, NRU, NRW

RIIO, U, W

Computational grid spacing in sweep direction.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Boundary Tcondition types and values for current sweep direction,

specified as IBC(I,J) and FBC(I,J), where I runs from 1 to N,q,
corresponding to the N,q conditions needed, and J = I or 2, cor-
responding to tile lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary,, 2 for upper
bounda_ry'.

Boundaw condition equation number.

Minimum and maximum indices in the sweep direction.

Current ADI sweep number.

Index in the "vectorized" direction, i_.

Inverse Jacobian of the nonorthogonal grid transformation, J-L

Unit number for standard output.

Array indices associated with the dependent variables p, pu, and

/9 W.

Static density p, and velocities u and w, at time level n.

A,B,C

S

Coefficient submatrices A, B, and C at boundary" IBOUND (row
IEQ only').

Source term subvector S at boundary' IBOUND (element IEQ
only').

Description

Subroutine BCWVEL computes coefficients and source terms for swirl velocity boundary conditions.

The linearized equations for the various general types of boundary" conditions are developed in Section 7.0

of Volume 1. The following sections apply these generalized equations to the particular swirl vclocity
boundary" conditions in PRO'I'EUS? 4

la In the following description, for the first ADI sweep the dependent variables should have the superscript *, re-
presenting the intermediate solution, and for the second ADI sweep they should have the superscript n, representing
the final solution. For simplicity, however, only the superscript n is used. The superscripts on all other variables
are correct as written.

120 PROTEUS 2-D Subprograms: BCWVEL PROTEUS Programmer's Reference

No Change From Initial Conditions, Aw = 0

^

Applying equation (7.3) of Volume 1, and noting that Og/OQ = JOg/_Q, we get simply

Ji,j[w.A 1 ^In-- =0
7-/xp + 7 A(pw) i,j

Specified Swirl Velocity, w = f

Applying equation (7.5) of Volume 1,

[-- ^ In = £n.+l -- w n.w ^ 1 A(pw) _,,y ,,J
&,J 7- Ap + T _,j

Specified Two-Point Swirl Velocity Gradient in Coordinate Direction, Owl06 = f

Applying equation (7.8) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differencing,

[,,]. [,,in_ w 1 A(pw) +J2,j _____Ap+7w ^ 1 A(pw) =-Jl,j 7 A_ + 7- 10 2,j

(a¢4") 1+ Wl.j- w2,i

At the _ = 1 boundary,

[] [--;-A /1 W

1 A(pw) + Yu,,y - 7- zx_ + a(pw) _v,,j-JN,-i.j - _- _ + 7- N,-,,j
n+l n n

(A_)f_l,j + wu_ -l,j -- wUl,j

Analogous equations can easily be written for the _/boundaries.

Specified Three-Point Swirl Velocity Gradient in Coordinate Direction, Ow/&_ = f

Applying equation (7.8) of Volume 1 at the _ = 0 boundary, and using three-point one-sided differenc-

ing,

[÷] [w ^ ^ n w 1 A(pw) --
-3J l,j - --fi--Ap + A(pw) + 4J2, j - --fi- A_ + --fi- 2,j

l,j

[w,,÷ n

- = 2(A_4 n+l + 3wF, j - 4w_,j + w3, j
4,j TAP+ a(pw) 3,j

At the ¢ = 1 boundary,

[] [^ n w +
w 1 A(pw) - 4JN t --1,j -- --7 A_ + A(pw) Nt -l,jJN l-2,j ---_ A_ q---fi- NI-2,j

_ 2[A_cn+l n n _ n
3JNl,j -_w A_ +--_1 A(pw) ?q,j = t _VN1,j -- WN l -2,j + 4WN1-1,j 3WN1,j

Analogous equations can easily be written for the r/boundaries.

Specified Two-Point Swirl Velocity Gradient in Normal Direction, Vw • n =_f

Applying equation (7.12a) of Volume 1 at the _ = 0 boundary, and using two-point one-sided differ-

encing,

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: BCWVEL 121

where

w A_ + !
y,j _ _w/`_ + 7-1A(pw).],j + .G4 - 7- -h- A(pw) 2./ =

Z_ Ifn+l (_x I'lx -'t- _)"r/Y) 1, J n I n n17l I,j 1,j ml,j _r/Wl,j + Wl,j-- W2,j

' 9,,,=-,/d +

and 6_ is the variably centered difference operator presented in Section 6.0 of Volume 1. At the # = 1
boundary,

[[_ w/`_ + I ,5(pw) =w A,_ + l A(pw) + JN,,j -fi- -fi-
--'/,V I --I,j -- P- -"if- IN t --1 ,j ,VI, j

+ SYvlY)NI,j n n n

--_v_,yl- x_,y - 7hx_,/ 6_w,v1,y + w,v_-l,y - W.Vl,;

Analogous equations can easily be written for the _1boundaries.

Specified 77zree-t'oint Swirl Velocity Gradient in Normal Direction, Vw, n = f

Applying equation (7.12a) of Volume 1 at the _ = 0 bounda_', and using three-point one-sided differ-
encing,

[[÷_ _ w/`_+ A(pw) -w 1 A(pw) + 4J2,j-3J_ ,y 7- A_ + -F _,y 2,y

w 1 A(pw) - ,j ' 6r/l_,1,j +
Y3,j -- _ Ap 4- --fi- 3 ,j ml ,Y - ml ,y

11
3w_,j - 4w_,j + w3,j

where

and ,5. is the variably centered difference operator presented in Section 6.0 of Volume l. At the ¢ = 1
boundary',

w 1 A(pW) +
w 1 A(pw) -- 4JN_ -l,j -- -7 A_ + _- -1,jJ& -2,j - 7- A_ + -#- J_v_-2,j _,,,_

w 1 AO,,,)] 2/,¢ Fi, n+ 1 (_xrlx + _ylqY)Ni, j n

3J&,j - --p- A_ + -fi-- ANDj mNpj mNpj
-- LJNI ' j -- 6 r/W,_,I, J --

n -2,Y + 4w,_' t nWN 1 -1 ,j- 3wNl,j

Analogous equations can easily be written for the _ boundaries.

122 PROTEUS 2-D Subprograms: BCWVEL PROTEUS Programmer's Reference

Linear Extrapolation of Swirl Velocity

Applying equation (7.14) of Volume 1 at the _ = 0 boundary,

wA;;+ 1A(0,,,)] +
W A I A(pW) -- 2J2'J - "-P-- --fi- -12,jJ_,; - 7- Ap + -h- _,_

J3,j __ -P-WAp/_+ -fi-I A(pl,,') J3,j = -- "Wl 'j + "1"2'2 -- w3'j

At the { = 1 boundary',

w A_+ 1 A(pw)
w _^ 1 A(pW) -- 2JN I -I,j -- -P- _ -1,jJM -2,j - -fi- zap + -y ,v_-2,j N,

w ,^ 1 A(pw) = -- wn_]-2,j + 2w_]-1,j W,vt,j
JN t ,j -- --fi- tap + -'fi'- ,Vt,j

Analogous equations can easily be written for the r/boundaries.

Specified Flow A ng/e, tan-l(w]u) = f

This boundary" condition can be rewritten as

w
-- = tanfu

where fis the specified flow angle. Multiplying by pu,

(tan f)pu- pw = 0

Applying equation (7.5) of Volume 1 to the above equation, we get

n+l A n _ A n n
&,y [(tanf)i, j A(pu)i,/ A(pw)i,;] = - (tanf)_; + (pw)i,j

Remarks

1.

2.

+

This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

An error message is generated and execution is stopped if a non-existent swirl velocity boundary con-
dition is specified.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: BC'_WEL 123

Subroutine BLIN 1

Called by Calls

TURBBI_

Purpose

Compute inner layer turbulent viscosity along constant _ lines.

l._p_m

AI)LUS

CB

CNL

CVK

II.DAM P

INNER

IWALL2

I1

MU

MUT

N2

RER

RIIO, U, V, W

VORT

X,Y

Van Driest damping constant A +.

Constant B in the Spalding-Kleinstein inner layer model.

Exponent n in the Launder-Priddin modified mixing length for-
mula for the inner region of the Baldwin-Lomax turbulence
model.

Von Karman mixing length constant used in the inner region of
the Baldwin-Lomax and Spalding-Kleinstein models.

Flag for Iaundcr-Priddin modified mixing length formula in the
Baldwin-Lomax inner region model.

Flag for type of inner region model.

Flags indicating whether or not the r/boundaries are wails.

Grid index i in the _ direction.

Laminar coefficient of viscosity tat.

Outer layer turbulent viscosity coefficient (#,)o_,,, along constant
lin_2 S,

Number of grid points N2 in the ,7 direction.

Reference Reynolds number Re,.

Static density p, and velocities u, v, and w.

Total vorticity magnitude.

Cartesian coordinates x and y, or cylindrical coordinates x and r.

MUT Turbulent viscosity coefficient #, along constant _ lines.

Description

Subroutine BLIN1 computes the inner layer turbulent viscosity coefficient (#,) along constant { lines
(i.e., due to walls at q = 0 and/or)1 = 1.) Two different inner region models are available - the model of
Baldwin and Lomax (1978), and the model of Spalding (1961) and Kleinstein (1967). These are described
in Section 3.2 of Volume 1.

If both rt boundaries are solid walls, (ta,) is computed separately for each wall, and it is assumed that
the two inner regions do not overlap. For each wall, the computation is done inside a loop starting at the
wall and moving outward. Once the inner region value exceeds the outer region value, the loop is exited.
Thus/x, = (ta,).... until (ta,),,_,,, > (#,) then ta, = (ta,)o_,,,.

The distribution of ta, across the intersection of the inner and outer regions is smoothed using the fol-
lowing formulas. For the)7 = 0 wall,

124 PROTEUS 2-D Subprograms: BLIN1 PROTEUS Programmer's Reference

1

I r(,,& __+ 2(_,&_, + o,&]0,,);__1- 4

where the boundary between the inner and outer regions falls between between j =Jb- i and j =j_. It
should be noted that the unsmoothed value of 01,) is used in the second smoothinu formula, not the
smoothed value from the first formula. Similarly, for the _/= 1 wall,

1

1 [(p.r)/L' + 2(.,),- + (,uz)2_,]

where the boundary between the inner and outer regions falls between between j = j_ + 1 and j =-j_.

Remarks

possibility of floating point errors, the value of I f_l_ used to compute r' and u" is set1. fifo avoid the
to a minimum of 10 _0.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: BLIN! 125

Subroutine BLIN2

Called by

TURBBL

Calls Purpose

Compute inner layer turbulent viscosity along constant _t lines.

* API,US

* CB

* CNL

* CVK

I)UMMY

* ILDAMP

* INNER

* IWALL1

12

MU

* NI

* RER

RIIO, U, V, W

VORT

X,Y

o.to t

DUMMY

l)escription

Van Driest damping constant A +

Constant B in the Spalding-Kleinstein inner layer model.

Exponent n in the Launder-Priddin modified mixing length for-
mula for the inner region of the B',ddwin-Lomax turbulence
model.

Von Karman mixing length constant used in the inner region of
the Baldwin-Lomax and Spalding-Kleinstein models.

Outer layer turbulent viscosity coefficient (_t,)o_,,, along constant rt
lines.

Flag for Launder-Priddin modified mixing length formula in the
Baldwin-Lomax inner region model.

Flag for type of inner region model.

Flags indicating whether or not the _ boundaries are walls.

Grid indexj in the ,1 direction.

Laminar coefficient of viscosity t_.

Number of grid points N I in the _ direction.

Reference Reynolds number Re r.

Static density p, and velocities u, v, and w.

Total vorticity magnitude.

Cartesian coordinates x and y, or cylindrical coordinates x and r.

Turbulent viscosity coefficient u, along constant r/lines.

Subroutine BLIN2 computes the inner layer turbulent viscosity coefficient (#,) along constant q lines
(i.e., due to walls at _ = 0 and/or _ = 1.) The procedure is exactly analogous to that used in subroutine
BI.IN1.

126 PROTEUS 2-D Subprograms: BLIN2 PROTEUS Programmer's Reference

BLOCK DATA Subprogram

Called by Calls Purpose

Set default values for input parameters, plus a few other parameters.

l.p_m

None.

All namelist input parameters, plus:

CCP1, CCP2, CCP3, CCP4

CK 1, CK2

CMU 1, CMU2

GC

IBCt-I,M

IBVUP

ICONV

IGINT

ITBEG

KBCPER

NC, NXM, NYM, NZM, NEN

NIN

NR, NRU, NRV, NRW, NET

RAX

TAU

Constants in formula for specific heat. (8.53 x 103, 3.12 x 104,

2.065 x 106, 7.83 x 10_) Is

Constants in formula for laminar thermal conductivity coefficient.

(7.4907 x 10 3, 350.0)_5

Constants in formula for laminar viscosity coefficicnt. (7.3035

x 10-7, 198.6)1s

Proportionality factor gc in Newton's second law. (32.174) _s

Flags for elimination of off-diagonal coefficient submatrices re-
suiting from three-point boundary conditions in the { and _ di-
rections at either boundary; 0 if elimination is not necessary, 1 if

it is. (2*0,2*0)

Flags for updating boundary values from first sweep after second

sweep; 0 if updating is not necessary, 1 if it is. (0,0)

Convergence flag; 1 if converged, 0 if not. (0)

Flags for grid interpolation requirement for the { and _ directions;

0 if interpolation is not necessary, 1 if it is. (0,0)

The time level n at the beginning of a run. (1)

Flags for spatially periodic boundary conditions in the _ and rI
directions; 0 for non-periodic, 1 for periodic. (0,0)

Arra_, indices associated with the continuity, x-momentum,

y-momentum (or r-momentum if axisymmetric), swirl momen-
tum, and energy equations. (1,2,3,5,4)

Unit number for standard input. (5)

Array indices associated with the dependent variables p, pu, pv,

pw, and Er. (1,2,3,5,4)

1 for two-dimensional planar flow, and the local radius r for

axisymmetric flow. (NMAXP*I.0)

Initial time value r. (NTOTP*0.0)

15 "l'hese values are for reference conditions specified in English units. Values for SI units are set in subroutine IN-
PUT.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: BLOCK DATA 127

l)e_'ription

The BI.()('K I)ATA routine is used to set default values for all the input parameters, plus various other
parameters and constants. The defaults for all the input parameters are given as part of the st_mdard input
description in Section 3.1 of Volume 2. The values for the other parameters and constants set in BI.OCK
I)ATA are given in parentheses in the above output description. Note that some of these values assume

En_ish units are being used to specit_" reference conditions. If SI units are being used, these values are re-
defined in subroutine INPI;'I'.

Remarks

1. Most of the default values are defined directly, but some, like the reference viscosity MUR, are set equal
to zero and defined m st, broutine INPUT if not specified by' the user.

128 PROTEUS 2-D Subprograms: BLOCK DATA PROTEUS Programmer's Reference

SubroutineBLKOUT(I1PT,I2PT)

Calledby
ADI
AVISC1
AVISC2
BCGEN
FILTER

Calls Purpose

Print coefficient blocks at specified indices in the _ and 1,/directions.

A,B,C

IHSTAG

ISWEEP

ISWIRL

I 1PT, I2PT

NC, NXM, NYM, NZM, NEN

NEQ

* NOUT

S

o to.t

None.

Description

Coefficient submatrices A, B, and C

Flag for constant stagnation enthalpy option.

Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Indices for printout in the _ and I,/directions.

Array indices associated with the continuity, x-momentum,
y-momentum (or r-momentum if axisymmetric), swirl momen-
tum, and energy equations.

Number of coupled equations being solved, N,q.

Unit number for standard output.

Source term subvector S.

Subroutine BLKOUT prints the coefficient block submatrices A, B, and C, and the source term sub-
vector S at the grid points specified by I IPT and I2PT. This is the routine that actually prints the output
for the IDEBUG(1) through IDEBUG(4) options.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: BLKOUT 129

Subroutine BIK3

Called by Calls Purpose

ADI FII.TER Solve 3x3 block tridiagonal system of equations.

A, B,C

NPTS

NV

S

Coefficient submatrices A, B, and C

Number of grid points in the sweep direction, N.

Number of grid points in the "vectorized" direction, N_.

Source term subvector S.

Computed solution subvector.

Description

Subroutine BLK3 solves a block tridiagonal system of equations with 3x3 blocks using the block matrix
version of the Thomas algorithm. Subroutine FILTER is called in an attempt to eliminate any zero values
on the diagonal of the submatrix B at the two boundaries. These can occur when boundary- conditions are
specified using the JBC and/or IBC input parameters, depending on the initial conditions and the order of
the boundary conditions.

The algorithm is described in Section 8.2.1 of Volume 1. For clarity, that description involves additional

"new" matrices D, E, and A0'. In Fortran, however, we can save storage by overwriting B, C, and S. The
following table relates the algorithm as implemented in Fortran to the notation used in Volume 1, for the
first ADI sweep. An exactly analogous procedure is followed for the second sweep.

Step

1

2a

2b

2c

3a

3b

3c

3d

3e

In Fortran In Volume 1 Notation

Dl = Bl

LU decompose B_, storing result in B_

Solve B_EI = Ci for El using LU decomposition of
B_, storing result in C l

^ ^

Solve B_AQ', = S, for AQ] using LU decomposition
of B_, storing result in S_

Fori=2to Nl,

Compute B, - A,C,_,, storing result in B,

Compute S, - A,S,__, storing result in S,

LU decompose B,, storing result in B,

Solve B,E, = C, for E, using LU decomposition of B,,
storing result in C,

^ ^

Solve B,AQ_ = S, for AQ_ using LU decomposition
of B,, storing result in S,

LU decomposition of D_

El = Di-_C,

^

AQ' l = Di-ISl

D, = B,- A,E,q
^

S_- A,AQ,'_I

LU decomposition of D,

E, = DT1C,

^ ex

AQ_ = D;'(S,- A,AQ_<)

A a'l = AQ.v 1

Fori=N1- 1 to 1,

Compute S_- C,S,q, storing result in S, Ate,---- A(_: -- E A(_,_I

130 PROTEUS 2-D Subprograms: BLK3 PROTEUS Programmer's Reference

Remarks

.

2.

The notation used in the comments in BLK3 is consistent with the notation used in the description of

the "algorithm in Volume 1.

The Thomas algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an
ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm
can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the

A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines. This increases
the storage required by the program, but greatly decreases the CPU time required for the ADI solution.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: BLK3 131

Subroutine BLK3P

Called by Calls

ADI

Purpose

Solve 3x3 periodic block tridiagonal system of equations.

A,B,C

NPTS

NV

S

Coefficient submatrices A, B, and C

Number of grid points in the sweep direction, N.

Number of grid points in the "vectorized" direction, N,.

Source term subvector S.

o.tp,,t

Computed solution subvector.

Description

Subroutine BLK3P solves a periodic block tridiagonal system of equations with 3x3 blocks. _Ma efficient
algorithm similar to the block matrix version of the Thomas algorithm is used to solve the equations. The
algorithm is described in Section 8.2.2 of Volume I. For clarity, that description involves additional "new"

matrices D, E, F, G, and AQ'. In lzortran, however, we can save storage by overwriting A, B, C, and S.
The following table relates the algorithm as implemented in Fortran to the notation used in Volume 1, for
the first ADI sweep. An exactly analogous procedure is followed for the second sweep.

Stcp

la

lb

2a

2b

2c

2d

In Fortran In Volume 1 Notation

D2 = B2

F2 = Cu,

LU decompose B 2, storing result in B 2

Soh'e B2E2 = C2 for 1".2using LU decomposition of
B2, storing result in C 2

Solve B2(; 2 = A 2 for (;2 using LU decomposition of
B 2, storing result in A 2

Soh'e B2A0; = $2 for A0_ using LU decomposition

of B 2, storing result in S._

LU decomposition of D 2

E2 = Di1C2

G2 = D_-t A2

^

AQ_ = D_-IS2

132 PROTEUS 2-D Subprograms: BLK3P PROTEUS Programmer's Reference

Step

3a

3b

3c

3d

3e

3i"

3g

3h

3i

3j

4a

4b

4c

4d

4e

4t"

In Fortran In Volume 1 Notation

Fori=3to A"1- 1,

Compute B, - A,C,_ 1, storing result in B,

Compute S, - &S,_ 1, storing result in S,

Compute -A,A, i, storing result in A,

I l? decompose B,, storing result in B,

Solve B,E, = C, for E, using I.U decomposition of B,,
storing result in C,

Solve B,G, = A, for G, using I.U decomposition of B,,
storing result in A,

Solve B,AQ: = S, for A0: using IM decomposition

of B,, storing result in S,

Compute Bxl - CxIA , i, storing result in Bx_

Compute

Compute

SN1-- CN1St I' storing result in SNI

--(;s_C, 1, storing result in C v_

Compute AN1-1 + CN1-1, storing result in A.v I 1

Compute A_v_+ C:v_, storing result in C v1

Compute Bu_ - CNIAN 1-1, storing result in Bxl

Compute Sul -- QvlSul-i, storing result in SNI

I.U decompose Bxl, storing result in Bxl

Solve By kQ'vl = Sul for A0'ul using LU decompos-
ition of'B_ l, storing result in Svl

D,=B,-AEe 1

-A,G,

I.U decomposition of 1):

Ei = 1), 1C,

G, = l)ilAiG, 1

a6: = D, ,(S,- ._VM?:1)

BNI -- EF, G,
) 2

s_,,_- Zr;AQ;

GN I 1 D 1= -_'l l(CxI I "%'1 ,Gxl 2)

FN 1 I = A:q - Fxi 2E,,- 1 2

N I 1

D_ I=BN 1- X F,G,
t 2

N 1 1 ^

Sul- v F,AQ;
i 2

I,U decomposition of l)xl
N 1 1

rtNl : D,:I(S,,1 - 2 F, A0:)
t:2

Compute S._.I ,- A vI ,S_., storing result in S v, i A0:q i = A(_'_v1-I -- Gv, 1A(_v l

Fori=N_-2to 2,

Compute S,- A,Sxl- C,S,_,, storing result in S, A0, = A0: - G,A0,v,- E_AO,_a

Set S 1 = Sxt AQ 1 = Arx I

Remarks

l.

2.

The notation used in the comments in BIK3P is consistent with thc notation used in the description

of the algorithm in Volume I.

'lhe solution algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an
AI)I procedure, however, if the coefficients and source terms are stored in both directions, the algorithm
can bc vcctorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the
A, B, C, and S arrays. It was added simply to "allow vectorization of the BIK routines. This increases
the storage required by the program, but greatly decreases the CPU time required ff_r the ADI solution.

PROTEUS 2-D Programmer's Reference PROTE[:S Subprograms: BLK3P 133

SubroutineBLK4

CaUedby
ADI

Calls Purpose
FILTER Solve4x4blocktridiagonalsystemof equations.

A,B,C
NPTS
NV
S

CoefficientsubmatricesA, B, andC

Number of grid points in the sweep direction, N.

Number of grid points in the "vectorized" direction, Nv.

Source term subvector S.

S Computed solution subvector.

Description

Subroutine BLK4 solves a block tridiagonal system of equations with 4x4 blocks using the block matrix
version of the Thomas algorithm. Subroutine FILTER is called in an attempt to eliminate any zero values
on the diagonal of the submatrix B at the two boundaries. These can occur when boundary conditions are
specified using the JBC and/or IBC input parameters, depending on the initial conditions and the order of
the boundary conditions.

The algorithm is described in Section 8.2.1 of Volume 1. For clarity, that description involves additional

"new" matrices D, E, and A(_'. In Fortran, however, storage is saved by overwriting B, C, and S. The al-

gorithm is identical to that used in subroutine BLK3. See the description of that subroutine for a table
relating the algorithm as implemented in Fortran to the notation used in Volume 1.

Remarks

I.

2

The notation used in the comments in BLK4 is consistent with the notation used in the description of
the "algorithm in Volume 1.

The Thomas algorithm is rccursive and therefore cannot be vectorized in the sweep direction. In an
ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm
can be vcctorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the
A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines. This increases
the storage required by the program, but greatly decreases the CPU time required for the ADI solution.

134 PROTEUS 2-D Subprograms: BLK4 PROTEUS Programmer's Reference

Subroutine BLK4P

Called by Calls Purpose

ADI Solve 4x4 periodic block tridiagonal system of equations.

A,B,C

NPTS

NV

S

Coefficient submatrices A, B, and C

Number of grid points in the sweep direction, N.

Number of grid points in the "vectorized" direction, Nv.

Source term subvector S.

Output

S Computed solution subvector.

Description

Subroutine BLK4P solves a periodic block tridiagonal system of equations with 4x4 blocks. An efficient
algorithm similar to the block matrix version of the Thomas algorithm is used to solve the equations. The
algorithm is described in Section 8.2.2 of Volume 1. For clarity, that description involves additional "new"

matrices D, E, F, G, and A0'. In Fortran, however, storage is saved by overwriting A, B, C, and S. The
algorithm is identical to that used in subroutine BLK3P. See the description of that subroutine for a table
relating the algorithm as implemented in Fortran to the notation used in Volume 1.

Remarks

.

2.

The notation used in the comments in BLK4P is consistent with the notation used in the description

of the algorithm in Volume 1.

The solution algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an
ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm
can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the
A, B, C, and S arrays. It was added simply to "allow vectorization of the BLK routines. This increases
the storage required by the program, but greatly decreases the CPU time required for the ADI solution.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: BLK4P 135

SubroutineBIK5

Calledby C'dls
ADI FII.TtiR

Purpose
Solve5x5blocktridiagonalsystemofequations.

A, B,C
NPTS
NV
S

CoefficientsubmatricesA, B, and C

Number of grid points in the sweep direction, N.

Number of grid points in the "vectorized" direction, N,.

Source term subvector S.

o.t_u_!v_m

Computed solution subvector.

Description

Subroutine BLK5 solves a block tridiagonal system of equations with 5x5 blocks using the block matrix
version of the Thomas algorithm. Subroutine FILTER is called in an attempt to eliminate any zero values
on the diagonal of the submatrix B at the two boundaries. These can occur when boundary conditions are
specified using the JBC and/or IBC input paramcters, depending on the initial conditions and the order of
the boundary conditions.

The algorithm is described in Section 8.2.1 of Volume 1. For clarity, that description involves additional

"new" matrices D, E, and A0'. In tzortran, however, storage is saved by overwriting B, C, and S. The al-
gorittun is identical to that used in subroutine BLK3. See the description of that subroutine for a table
relating the algorithm as implemented in Fortran to the notation used in Volume 1.

Remarks

.

2.

The notation used in the comments in BLK5 is consistent with the notation used in the description of
the algorithm in Volume 1.

The Thomas algorithm is rccursive and therefore cannot be vectorizcd in the sweep direction. In an
AI)I procedure, however, if the coefficients and source terms are stored in both directions, the algorithm
can bc vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on thc
iX, B, C, and S arrays, it was added simply to allow vectorization of the BLK routines. This increases
The storage rcquired by the program, but greatly' decreases the CPU time rcquired for the AI)I solution.

136 PROTEUS 2-D Subprograms: BLK5 PROTEUS Programmer's Reference

Subroutine BLK5P

Called by

ADI

Calls Purpose

Solve 5x5 periodic block tridiagonal system of equations.

A,B,C

NPTS

NV

S

Coefficient submatrices A, B, and C

Number of grid points in the sweep direction, N.

Number of grid points in the "vectorized" direction, N,.

Source term subvector S.

o.tp.t

Computed solution subvcctor.

Description

Subroutine BLK5P solves a periodic block tridiagonal system of equations with 5x5 blocks. An efficient
algorithm similar to the block matrix version of the Thomas algorithm is used to solve the equations.]'he
algorithm is described in Section 8.2.2 of Volume 1. For clarity, that description involves additional "new"

^

matrices D, E, F, G, and AQ'. In Fortran, however, storage is saved by over_'riting A, B, C, and S. The
algorithm is identical to that used in subroutine BLK3P. See the description of that subroutine for a table
relating the algorithm as implemented in Fortran to the notation used in Volume 1.

Remarks

.

2.

The notation used in the comments in BLK5P is consistent with the notation used in the description
of the algorithm in Volume 1.

The solution algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an
ADI procedure, however, ff the coefficients and source terms are stored in both directions, the algorithm
can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the
A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines. This increases
the storage required by the program, but greatly decreases the CPU time required for the ADI solution.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: BLKSP 137

Subroutine B LOUT 1

Called by Calls Purpose

TURBBL ISAMAX Compute outer layer turbulent viscosity, using the algebraic Baldwin-
ISAMIN Lomax model, along constant _ lines.

l._p_m

* APLUS

* CB

* CCLAU

* CCP

* CKLEB

* CNA

* CWK

* IWALL2

I1

MU

* N2

* RER

RIIO, U, V, W

VORT

X,Y

LWAKE2

M U T

Description

Van Driest damping constant A +

Constant B in the Klebanoff intermittency factor.

Clauser constant K in the Baldwin-Lomax outer region model.

Constant CCpin the Baldwin-Lomax outer region model.

Constant Cx_,b in the Klebanoff intermittency factor.

Exponent n in the formula used to average the two outer region
/_, profdes that result when both boundaries in a coordinate di-
rection are solid surfaces.

Constant C,, in the Baldwin-Lomax outer region model.

Flags indicating whether or not the _/boundaries are walls.

Grid index i in the ¢ direction.

Laminar coefficient of viscosity _.

Number of grid points N2 in the v/direction.

Reference Reynolds number Re,.

Static density p, and velocities u, v, and w.

Total vorticity magnitude.

Cartesian coordinates x and y, or cylindrical coordinates x and r.

Grid index j in the _/ direction used as the origin for computing
length scales for free turbulent flows.

Outer layer turbulent viscosity coefficient (_z,)..... along constant
lines.

Subroutine BLOUT1 computes the outer layer turbulent viscosity coefficient (g,)o=,,, along constant
lines (i.e., due to walls at _/= 0 and/or _ = 1, or due to a free turbulent flow in the _ direction) using the
algebraic eddy viscosity model of Baldwin and Lomax (1978). The model is described in Section 3.1 of
Volume 1.

In BLOUT1, the values and locations of IPI . and IV are found fLrst if a[. . Next, solid wall exists
at _ = 0 and/or _/= 1, the parameter F,**, is computed for each waU. If nmther _/bounda_,y is a solid wall,
a free turbulent flow in the ¢ direction is assumed. In this case F_°_, is computed using the procedure de-
scribed in Section 3.1 of Volume 1.

Finally, if a solid wall exists at _ = 0 or at _ = 1, but not both, or if neither _ boundary is a solid waU,
the value of (_,)0_,,, is computed directly. If both _/boundaries are solid wails, the two computed values of

138 PROTEUS 2-D Subprograms: BLOUTI PROTEUS Programmer's Reference

F_ke are combined using the avera_ng formula presented as equation (3.12) of Volume 1, and the resulting
value is used to compute 0_,) •

Remarks

1. The Cray BLAS routines ISAMAX and ISAMIN are used in computing] V,_o_}, 117),,,_1, and F,_,.

2. If the maximum and minimum total velocities are equal, indicating a uniform flow along this particular
line, their locations are arbitrarily set equal to the middle 71 index. This normally would occur only

during the first time step in a case with uniform initial velocity profiles.

3. To avoid the possibility, of floating point errors, the values of I V_,._I, J V_,,.] ' and F_. are set to a
minimum of 10 -_°

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: BLOUTI 139

SubroutineBLOUT2

Calledby Calls Purpose
TL'RBBL ISAMAX Computeouterlayerturbulent viscosity, using the algebraic Baldwin-

ISAMIN Lomax model, along constant _ lines.

* APLUS

* CB

* CCLAU

* CCP

* CKLEB

* CNA

* CWK

* IWALL1

I2

MU

* NI

* RER

RtlO, U, V, W

VORT

X,Y

o to.t

LWAKE 1

DUMMY

Description

Van Driest damping constant A +.

Constant B in the Klebanoff intermittency factor.

Clauser constant K in the Baldwin-Lomax outer region model.

Constant Cop in the Baldwin-Lomax outer region model.

Constant C_cz,_in the Klebanoff intermittency factor.

Exponent n in the formula used to average the two outer region
#, profiles that result when both boundaries in a coordinate di-
rection are solid surfaces.

Constant C,, in the Baldwin-Lomax outer region model.

Flags indicating whether or not the ¢ boundaries are walls.

Grid indexj in the q direction.

Laminar coefficient of viscosity tap

Number of grid points N_ in the _ direction.

Reference Reynolds number Re,.

Static density p, and velocities u, v, and w.

Total vorticity magnitude.

Cartesian coordinates x and y, or cylindrical coordinates x and r.

Grid index i in the ¢ direction used as the origin for computing
length scales for free turbulent flows.

Outer layer turbulent viscosity coefficient (u,) along constant n
lincs.

Subroutine BLOUT2 computes the outer layer turbulent viscosity coefficient (/z,) along constant
lines (i.e., due to walls at ¢ = 0 and/or ¢ = 1, or due to a free turbulent flow in the n direction) using the
algebraic eddy viscosity model of Baldwin and Lomax (1978). The procedure is exactly analogous to that
used in subroutine BLOUTI.

140 PROTEUS 2-D Subprograms: BLOLq'2 PROTEUS Programmer's Reference

Subroutine BVUP

Called by Calls Purpose

EXEC BCGEN Update first sweep boundary values after second sweep.
EQSTAT
SGEFA
SGESL

* ALPtlA1

DXI

IBVUP

* ISWIRL

Jl

KBCPER

NEQ

NEQP

NR, NRU, NRV, NRW, NET

NPT2

* NI, N2

NIP

RttO, U, V, W, ET

"RttOL, UL, VL, WL, ETL

XIX, XIY, XIT

Output

ALPHA

DEL

IBASE, ISTEP

ISWEEP

IV

METX, METY, METT

Spatial difference centering parameter _1 for the { direction.

Computational grid spacing A{.

Flags for updating boundary values from first sweep after second
sweep; 0 if updating is not necessary, 1 if it is.

Flag for swirl in axisyrnmetric flow.

Inverse Jacobian of the nonorthogonal grid transformation, J 1.

Flags for spatially periodic boundary" conditions in the _ and _/
directions; 0 for non-periodic, 1 for pcriodic.

Number of coupled equations being solved, N,q.

Cray PARAMETER specifying maximum number of coupled
equations "allowed.

Array indices associated with the dependent variables p, pu, pv,
pw, and E r.

N2 for non-pcriodic boundary conditions, N2 + 1 for spatially pe-
riodic boundary condition in _/.

Number of grid points N 1and 1_, in the _ and rt directions.

Cray PARAMETER specifying the DIMENSION ske in the
direction.

Static density p, velocities u, v, and w, and total energy Er at time
level n at all grid points.

Static dcnsity p, velocities u, v, and w, and total energy E r at time
level n + 1 at all interior grid points.

Metric coefficients ¢_, _ (or _, if axisymmetric), and 4,.

Spatial difference centering parameter c_ for the sweep direction
being updated.

Computational grid spacing for the sweep direction being updated.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

ADI sweep number for sweep direction being updated.

Index in the "vectorized" direction, i,.

Derivatives of computational coordinate, for the sweep direction
being updated, with respect to x, y (or r if axisymmetric), and t.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: BVUP 141

NPTS
NV

RItOL, L'I,,VL, WL,ETL

Numberof gridpointsN in the sweep direction being updated.

Number of grid points in the "vectorized" direction, N,.

Static density p, velocities u, v, and w, and total energy E r at time
level n + I at boundary points from first sweep.

Description

Subroutine BVUP updates boundary' values from the first, or _, sweep after the second, or rt, sweep.
In general, this is necessary" when gradient or extrapolation boundary conditions are used in the _ direction.
Some updating is also necessary when spatially periodic boundary conditions are used. The procedure is
described in Section 8.3 of Volume 1 for all cases.

Remarks

.

The comer values of p and E r are updated by linearly extrapolating from the two adjacent points in the
and _ directions, and averaging the two results. Note that this extrapolation is done in computational

space. Grid packing in either direction is thus not taken into account. The comer values of the ve-
locities are updated by doing the same type of extrapolation. Instead of averaging, however, the ex-
trapolated velocity whose absolute value is lower is used. This was done to maintain no-slip at duct
inlets and e.'dts.

Subroutines SGEFA and SGESL are Cray LINPACK routines. In general terms, if the Fortran arrays
A and S represent A and S, where A is a square N by N matrix and S is a vector with N elements, and
it"the leading dimension of the Fortran array A is LDA, then the Fortran sequence

CALL SGEFA (A,LDA,N,IPVT,INFO)
CALL SGESL (A,LDA,N,IPVT,S,0)

computes A-_S, storing the result in S.

142 PROTEUS 2-D Subprograms: BVUP PROTEUS Programmer's Reference

Subroutine COEFC

Called by Calls

EXEC

Purpose

Compute coeffÉcients and source term for the continuity equation.

ALPtlA

* ALPHA1, ALPHA2

DEL

DTAU

DXI, DETA

ETAX, ETAY, ETAT

IAXI

IBASE, ISTEP

ISWEEP

* ISWIRL

IV

I1, I2

Jl

METX, METY, METT

NC

NEQ

NPTS

NR, NRU, NRV, NRW, NET

RAX

RIIO, U, V

RHOL

* TIIC

XIX, XIY, XIT

Y

A,B,C

Spatial difference centering parameter a for the sweep direction.

Spatial difference centering parameters al and a2, for the _ and _/
directions.

Computational grid spacing in sweep direction.

Time step At.

Computational grid spacing A_ and A_/.

Metric coefficients rL, _/y(or r/r ff axisymrnctric), and vt,.

Flag for axisymmetric flow.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Index in the "vectorized" direction, iv.

Grid indices i and j, in the _ and I./directions.

Inverse Jacobian of the nonorthogonal grid transformation, J-'
(times the radius r for axisymmetric flow.)

Derivatives of sweep direction computational coordinate with re-
spect to x, y (or r ff axisymmetric), and t.

Array index associated with the continuity equation.

Number of coupled equations being solved, A_q.

Number of grid points in the sweep direction, N.

Array indices associated with the dependent variables p, pu, pv,
pw, and E r.

1 for two-dimensional planar flow, and the local radius r for
axisymmetric flow.

Static density p, and velocities u and v, at time level n.

Static density p from previous ADI sweep.

Parameters Ol and 0 2 determining type of time differencing for the
continuity cquation.

Metric coefficients _x, _y (or _, if a:dsymmetric), and _,.

Radial coordinate r for axisymmetric flow.

Coefficient submatrices A, B, and C at interior points (row NC
only).

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: COEFC 143

Sourceterm subvector S at interior points (element NC only).

Description

Subroutine COEFC computes the coefficients and source term for the continuity equation. Equations
(8.5a-b) in Volume 1 represent, in vector form, the four governing difference equations for the two AIM

.sweeps for 2-D planar flow. The elements of the inviscid flux vectors l_ and F ,are given in Section 2.0 of

1, and the elements of the viscous flux vectors -F%, _2v2, etc., are given in Appendix A of Volume\ tll|lln("

0_i/00,I coefficient matrices aE_,/aQ, etc., are given in Section 5.0 of Voluma 1. Using
A A

all of these equations, the differenced form of the continuity equation for 2-D plan_ flow may be written
tbr lhc two ADI sweeps as _6

S E'cF.U_.[.[_ direction)

A "7 A _B / ¢., 01At c?E1 A, dE 1 A, dE I A,

A_;i + (1 +02)A{ -a _7- AQi_ 1+(2ct- 1) --7-] AQi +(l-a) AQi+I =
'_O i-1 OQ /t i /i+l

I + 02 (6¢E1 + +
A_n-1

S3ycep 2 ('1 direction)

01AT
A_;y+

(1 + 02)A_ 1

C_ An " (')F1 /' naQ)_,+ A6;+ -- A95+ :
7,_, 7 +,

In the above equations, the subscripts i and j represent grid point indices in the _ and 77 directions. For
notational convenience, terms without an explicitly written i or j subscript are understood to be at i or j.

The vector of dependent variables is

1
=7 [p r,_ p_ _,]'r

The appropriate elements of the flux vectors are given by

1
E_ = -7 [pug + pv_y + p_,]

A 1
F_ = 7 [punx + PvnY + P_tt]

^ ^

The elements of the Jacobian coefficient matrix 0E/OQ for the continuity equation are

A

0E 1

a Q̂ -[{t _x {y 0]

t_ l'hese equations are written assuming the energy equation is being solved. For a constant stagnation enthalpy case,
the total energy E r would not appear as a dependent variable, and the Jacobian coefficient matrices would have
only three elements.

144 PROTEUS 2-D Subprograms: COEFC PROTEUS Programmer's Reference

t, ^ A ^

The Jacobian coefficient matrix 0F_/OQ has the same form as OEt/3Q, but with _ replaced by _/.

As an example of how these equations are translated into Fortran, consider the A(pu/J) term on the left
^ ^ ^

hand side for the first sweep. This is the second element of Q, so using the second element in OE_/OQ we

get

A(IV,I,NC,NRUr) -

B(IV,I,NC,NRU) -

C(W,I,NC,NRU) -

OJ(_'T)i,;

(1 +02)A _ (-00(_x)i-l'j

Ol(Az)i,j

(2_- 1)(_,)_,j(l + 02)_

01(_z)i,j
(i - _)(_x)_+l,j

(l + O2)A _

The equations for axisymmetric flow are developed in Appendix B of Volume 1. The axisymmetric
continuity equation for the two ADI sweeps is given by _

Sweep 1 (_ direction)

01m'¢ 1 -- _t r ArI_ 1+ (2a -- 1) r AQ, + (1 - _,) r ---=] AQ,+_I =
"'_: + (1+ o.>_,: ," ,_o /,_, -_- ,_Q/,+, j

Az 1 F q* 02 , ^n-1
1+02 F L6¢(rEt)+6,(rF')I"+ 1---_2 aP

Sweep 2 O1 direction)

AP.i+ (l+02)Ar l T --_x r---y-] AQ/ l+(2c_-l) r __ n =
OQ /j-I OQ /lj OQ]j+l

where now

1
6=-2- [p p. ,or pw l;Tl r

AEl = [Pt'I_x + PV_r + P_t]

1

A

©E_
A

OQ
-[_, _, L o o]

^ ^

As in 2-D planar flow, the Jacobian coefficient matrix @F_/8() has the same form as OEt/OQ, but with

replaced by _.

Note that the equations for 2-D planar and axisymmetric flow are very similar. In the axisymmetric

equations, the radius r appears as an additional coefficient in front of the flux vectors 1_and F, and in front

17 These equations are written for the general case with swirl. For a non-swirl case, the swirl momentum pw would

not appear as a dependent variable, and the Jacobian coefficient matrices would have only four elements.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: COEFC 145

of theJacobiancoefficientmatrices0E_/0Q and OF_/0Q. In addition, l/r appears in front of every term in
the equation except the A_ terms. In PROTEUS, the Fortran variables are defined in such a way that, for

many terms, the same coding can be used for both 2-D planar and axisymmetric flow. Unfortunately, this
may make some of the coding a little confusing. It is hoped that this detailed description, when compared
with the source listing, will help make things clear.

In COEFC, the coefficients of the left hand side, or implicit, terms are defined first. The implicit terms
for the second AD1 sweep have exactly the same form as for the ftrst sweep, but with _ replaced by _. By
defining DEL, METX, METY, and METT as the grid spacing and metric coefficients in the sweep direc-
tion, the same coding can be used for both sweeps. The variable RAX is equal to 1 for 2-D planar flow,
and the radius r for axisymmetric flow. This adds the r in front of the Jacobian coefficient matrices for
axisymmetric flow, but has no effect for 2-D planar flow. The 1/r coefficient in front of each term will be
added later. In this section of code, the coefficient of A_ (part of B(IV,I,NC,NR)) is set equal to r, not 1
as it should be. This will be corrected later.

The source term, or right hand side, for the first sweep is def'tned next. The difference formulas used to
compute the source term are the same as those used for the implicit terms. These formulas are presented
in Section 6.0 of Volume 1. For axisymmetric flow, the Fortran variable JI, which is normally def'med as
1/J, is temporarily redefined as r/J before the COEF routines are called. This automatically accounts for
the r coefficient in front of all the flux vectors in the source term. The 1/r coefficient in front of each term
will be added later. This definition of Jl adds an r in front of the A_ "-a term that should not be there. This
will also be corrected later.

The coding for the source term for the second sweep, which consists only of A_', comes next. The de-
fruition of JI also adds an r in front of this term that should not be there.

And finally, for axisymmctric flow, the entire equation is divided by the local radius r. This adds the
l[r cocfficient where it should be added, and removes the r in front of the At3 terms.

Remarks

.

2.

This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the
index in the non-sweep (i.e., "vectorized") direction, and the second subscript is the index in the sweep
direction. For sections ot" the code that apply to both sweeps (i.e., the implicit terms and the division
by r at the end), the first two subscripts are written as (IV,I). For sections of the code that apply only
to the first sweep, the first two subscripts are written as (I2,I1). For sections that apply only to the
second sweep, the)" are written as (11,I2). The third subscript on A, B, C, and S corresponds to the
equation. And, for A, B, and C, the fourth subscript corresponds to the dependent variable for which
A, B, or C is a coefficient.

146 PROTEUS 2-D Subprograms: COEFC PROTEUS Programmer's Reference

Subroutine COEFE

Called by Calls

EXEC

Purpose

Compute coefficients and source term for the energy equation.

ALPIIA

* ALPHA1, ALPHA2

DEL

DPDRHO, DPDRU, DPDRV,
DPDRW, DPDET

DTAU

DTDRHO, DTDRU, DTDRV,
DTDRW, DTDET

DXI, DETA

ETAX, ETAY, ETAT

IAXI

IBASE, ISTEP

* IEULER

ISWEEP

* ISWIRL

* ITHIN

IV

II, I2

JI

METX, METY, METT

MU, IrA, KT

NEN

NEQ

NPTS

NR, NRU, NRV, NRW, NET

P,T

PRR

RAX

Spatial difference centering parameter a for the sweep direction.

Spatial difference centering parameters a_ and a2, for the { and r/
directions.

Computational grid spacing in sweep direction.

Derivatives Op/Op, Op/O(pu), Op/O(pv), Op/O(pw), and Op/OEr.

Time step Az.

Derivatives OT/Op, OT/O(pu), OT]O(pv), OTdO(pw), and OT]OEr.

Computational grid spacing A{ and At/.

Metric coefficients _/_, G (or rtr if axisymmetric), and rb.

Flag for axisymmetric flow.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Flag for Euler calculation.

Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Flags for thin-layer option.

Index in the "vectorized" direction, iv.

Grid indices i and j, in the ¢ and v/directions.

Inverse Jacobian of the nonorthogonal grid transformation, Jq
(times the radius r for axisymmetric flow.)

Derivatives of sweep direction computational coordinate with re-
spect to x, y (or r if axisymmetric), and t.

Effective coefficient of viscosity t*, effective second coefficient of

viscosity)_, and effective coefficient of thermal conductivity k at
time level n.

Array index associated with the energy equation.

Number of coupled equations being solved, N,v

Number of grid points in the sweep direction, N.

Array indices associated with the dependent variables p, pu, pv,
pw, and E r.

Static pressure p and temperature T at time level n.

Reference Prandtl number Pr,.

1 for two-dimensional planar flow, and the local radius r for
a:dsymmetric flow.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: COEFE 147

RER

RHO,U, V,W, ET

THE

TL

UL, VL, WL,ETL

XIX, XIY, XIT
Y

ReferenceReynoldsnumberRe,.

Static density p, velocities u, v, and w, and total energy E r at time
level n.

Parameters O_, 02, and 03 determining type of time differencing for

the energy equation.

Static temperalure T from previous ADI sweep.

Velocities u, v, and w, and total energy Er from previous ADI

sweep.

Metric coefficients _, _y (or _, if axisymmetric), and G-

Radial coordinate r for a.,dsymrnetric flow.

A,B,C Coefficient submatrices A, B, and C at interior points (row NEN

only).

Source term subvector S at interior points (element NEN only).

Description

Subroutine COEFE computes the coefficients and source term for the energy equation. Equations

(8.5a-b) in Volume 1 represent, in vector form, the four governing difference equations for the two ADI

sweeps for 2-D planar flow. The elements of the inviscid flux vectors !_ and f7 are given in Section 2.0 of

Volume 1, and the elements of the viscous flux vectors l_vl, I_]v2, etc., are given in Appendix A of Volume

• ^ ^ 1_^ ^1 The Jacobian coefficient matrices OE/OQ, EvJOQ, etc., are given in Section 5.0 of Volume 1, Using
all of these equations, the differenced form of the energy equation for 2-D planar flow may be written for

the two ADI sweeps as

Sweep 1 (_ direction)

+

.n n -2..* n n A. . .n n A&* 101AT [(_-1 + f/) gi-lakli-I -- (f/-1 + 2f/+£+1) gi AQi + (fi + Ji+l) gi+l Vi+l] =
(l + 02)2(a¢)2

a_ A ^ _ a.__[._. " "
1 .jr. 0 2 (6_E4 -b _qV4) + " '_2 C_:(Ev,)4 -t- c_r/(rV,)4]

A A n 03A-c A A _n--I 02 An_ I

(l + o3)a_ E6:(Ev)4 + 6.(vv)_] [6_(Ev)4 + G(vv)_] * l + 02 aET1 +0 2 1 +0 2

148 PROTEUS 2-D Subprograms: COEFE PROTEUS Programmer's Reference

Sweep 2 (_/direction)

- _ -_ AQ)_,+ (2_- i) aQ) + (l- ,_) a6 :+,(1 + 02)A _ _Q j-i

O,ar [(g_, + jj) gj_,atgj_l_(fj_, + 2fj+fj+,) gj AQ) +(fj+ fj+l) gj+_kQS.+,] =
(1 + 02)2(A_) 2

AEr

In thc above equations, the subscripts i and j represent grid point indices in the _ and _7directions. For

notational convenience, terms without an explicitly written i or j subscript are understood to be at i or j.

q' "

On the left hand side, fis the coefficicnt of 0/0_ (or 0/0_, depending on the sweep) in the cEv_/SQ (or

O_'vJSQ) Jacobian coefficient matrix. Similarly, g is the term in the parentheses following 8/<?_ (or ". @-'7)

in the c?_2v,t06---._ (or Oi'_,/e6)_Jacobian coefficient matrix.

The vector of dependent variables is

^ 1
Q=-.7[p pu pv ET] T

The appropriate elements of the inviscid flux vectors are given by

A 1
Ea = 5- [(ET+ p)uG + (Er + p)v_y + £r _,]

" 1
F4 = --)- [(Er+ p)uvlx + (ET+ P)VVly + ETrl t]

The appropriate elements of the non-cross derivative viscous flux vectors are

I { (2;,+ ,_) _¢2.u2, _(v2)_] + O*+Re r 2 k xt)¢ + 2)_x_y(UV)_

2 2 k 2 "l

+T

(Fv,)4- y 1 t (2g+2) 2 2 2 2
Rer L. 2 [nx(U)" + ,ly(v),] + (_z + 2)_/x,_y(UV),_

And the appropriate elements of the cross derivative viscous flux vectors are

1 [2_({x_xUU n + _yrlyW,7) + 2_x(rlxUU,7 + _yUV,_)+)._yOlxVU,7 + _ vw,1)
Rer [_

+ f..tXx(rlyl.'Url+ rlxWr l) + ._y(VlyUUr l + rlxUVrl)+ p_r(_X_lx + _yrly)'l;[_j

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: COEFE 149

1 1 F2u(,TxCxuu¢+ ,Ty¢y_v0 + ;,,t._(_xuu_ + _yUV0 +).,ly(_xvu¢+ _yw0
J Re r L

The elements of the Jacobian coefficient matrix 0_]/00 for the inviscid terms in the energ3" equation are

0p 0p
OE--4-= -f_ -_ A_x+f, o(p_)

where f = uCx + v_ and f2 : (Er + P)Ip.

^ ^

The elements of the Jacobian coefficient matrix OEv_/c?Q for the viscous terms are

O(Evl)4 1 O _ 0 1 O l 0 0T

^ - - - _0 -_--
OQ Rer 0Q 41 8Q 42 _?Q 43

where

0 l

OQ__) O u2 0 v2 0

,0 I

OQ 42

(') ()OEv_ O OT

OQ 43

^ ,,, ^ ^

The Jacobian coefficient matrices 0174/0t_ and O(Fv,)4/_Q have the same form as OE4/OQ and O(Ev,)4/OQ.,

but with ¢ replaced by _/.

As an example of how these equations are translated into Fortran, consider the A(pu/J) term on the left
^ ^ ^

hand side for the first sweep. 1"his is the second element of Q, so using the second element in 8EJOQ we

get for the inviscid term

150 PROTEUS 2-D Subprograms: COEFE PROTEUS Programmer's Reference

A(IV,I,NEN,NRU) -

B(IV,I,NEN,NRU) - --

• T " TC(IV,I,NEN,NRU) -

Ol(AZ)i'Y -oL) p i-l,j "(1 + 02)4 ¢ (-- _x + (U_x + vCv) _ i-l,j

(,

{(I 1}02(Ar)i'J (2a - 1) Ep+ p__ix + (u_ x + V{y) c3p
(l + 02)4¢ z,i i,j

Ol(Ar)i,j

(1 + 02)A_ ET+ P + (U_x + V_Y) 0--_ i+1(1 -- _) p _x i+1,] ,j

^ e,

For the viscous terms on the left hand side, we use the second element in O(Ev_)4]?_Q, which is

There are three terms in that element. Thus, in turn, f= _x,/Re,, a,r/R¢, and ao/R¢, and g = u/p, v/p, and
OT/O(pu). To add the viscous contribution to this part of the A coefficient submatrix, we therefore set

01 (AT)i,j
A(IV,I,NEN,NRU) = A(IV,I,NEN,NRU) -

(1 + 02)2(A¢)2Rer

Similar equations may be written for the B and C coefficient submatrices.

The equations for axisymmetric flow are dcvelopcd in Appendix B of Volume 1. The axisymmetric
energy equation for the two ADI sweeps is given by _8

Sweep 1 (_ direction)

()_ +

+

It t" l f >"]01&z I 0E5 A(_7__+(2_-1) r---_-J AQ,+(1 _) r c_1"5 ^"-- _ AQ,+I
(1 + 02)A_ r -- ct r _ _-I OQ ,/i OQ i+l

01±* 11 _ ^. _ o ^. _ ^"]
(1 + 02)2(A_) "_ _ (r'-lf-1 + r,f) gt_tAq,_l - (r,_lf_ 1 + 2r, f + r,+if+l) g, AQ, + (r,f + r,+_£__t) g,+tAQ,+_ =

A't 1 ^ ,, n A'r 1 ^ n

I +0 2 _ [6¢(rEs)+6q(rFs)] + I +0 2 7 {6,[, +

(1 +03)A'r 1 ^ '1 03Az 1 ^ ,- ^ _,n-I 02 ^

(l_v2>S] 6q[r(["n)S]} I +0 2 7" {6¢[r(Ev2)s] + AE_'-I

Sweep 2 (r/ direction)

O_Az 1^

(l +02)A)_ r

O_Az

(l + 02)2(Arl) 2

^,

AE T

6_F5 ^n 7] AQ, +(1 a) r AQ;+IAQ__ 1 + (2a -- 1) r

n. ^_ _ n n ^n r_+lf_+l)g,+lAO;+l]1 [(r;_lf:_l + rlf,) g,_IAQ__ 1 (rt ,fj_l + 2r, f i + rz+lf_+l) g, AQ; + (r,4 + n ,1 ^ n =?

18 These equations are _ritten for the general case with swirl. For a non-swirl case, the swirl momentum pw would

not appear as a dependent variable, and the Jacobian coefficient matrices would have only four elements.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: COEFE 151

wherenow

Q=l[p pu pv pw ET] r

^ 1
E5 = -)- [(ET + P)U_x + (ET + P)V_r + ET _t]

F5 = [(Er + P)U_x + (ET + P)V_r + Er et]

^ 1 1
rE" _

_vQs- j Re r
(2u 2+ ;) [G(u22)_+ ¢_(v2)¢]+ (_ + 'bCdr(UV)_+)-_. -7- (¢.v2 + Guv)

ECHO,2 + w%_+ ¢_(u2 + w%_-]++T 3

1 { (2# + ,_) 2 _ 2 2 r,Re r 2 [r/x(U')r/+ rlr(v))7] + (/_ + _)rlxVlr(UV)rl + '_tlr T (rlrV2 + rlxUV)

2 2 2 2 k 2 2 }+ --_ [_Ix(V + W2)r/ + r/r(U + W2)r/] + _ ()Ix + _lr)T,_

1 1

J Re r 2/a(_xlTxtdUr/ + _rnrVVq) + 2_x(rlxUU_ + rlfldVrl) + 2_r(VlxVU_l + rlrVVrl) +)trl r -_-(_x u + _rV)rrl

2

+ i.tCx(rlrVUr I + rlxWv_ + rlxWWrl) + ll_r(rlrUUrl + tlxtlVvt + rlrWWrl) _ lair W-r

F
1 2IR(rJx_xUU: +)lr_r_W¢) +)°rlx(_xt'tu_ + _rUV_) +)'_r(_xVU¢ + _rW_) + 2_r 7 (rlxU + _rV)r_

Rer

2
W

+ wT_(Gvu¢ + Gw¢ + Gww¢) + Unr(GUU_+ G_ + Gww_)- u'_ r

The elements of the Jacobian coefficient matrix 8E[8() for the inviscid terms in the axisymmetric form

of the energy equation are

dE5 OF, dp Op Op

06 --fl -- "_p f2¢x + fl f2_r + fl fl
= &(pu) a(pv) a(pw)

where f = u¢, + v¢, and f2 = (Er + P)lP.

^ A

The elements of the Jacobian coefficient matrix OEv_/OQ for the viscous terms are

where

152 PROTEUS 2-D Subprograms: COEFE PROTEUS Programmer's Reference

8 , 8 v v OT

- = -;q + -b-q + a0
OQ 53

= i ,+)8 _ 8 w 8T

%z-_- _,-P-) n° 3(pw)
0Q 54

%x = (2/x +).)¢2x + ,¢r 2

2 ;.)¢r2O:rr -----laCx + (2_z +

_2 --t- e2azz = laCx I._r

, 2
°t xr = 7 -_x_r

, 2 2
°err = T _r

aCO=-_ r

As in 2-D planar flow, the Jacobian coefficient matrices OFs/OQ and O(f:v,)s/OQ have the same form as

^ ^ !_ 0 ^OEs/O Q and 8(vl)s/ Q, but with _ replaced by _t.

Note that the equations for 2-D planar and axisymmetric flow are very similar. In the axisymmetric
equations there are some additional terms involving the radius r in the viscous flux vectors, with corre-
sponding terms in the Jacobian coefficient matrices. The radius r appears as an additional coefficient in

front of the flux vectors 1_, l_v,, etc., and in front of the Jacobian coefficient matrices Of_dOQ, 0(Evt)d0(_,

etc. In addition, l[r appears in front of every term in the equation except the AE r terms. In PROTEUS,
the Fortran variables are defined in such a way that, for many terms, the same coding can be used for both
2-D planar and axisymmetric flow. Unfortunately, this may make some of the coding a little confusing.
It is hoped that this detailed description, when compared with the source listing, will help make things clear.

In COEFE, the coefficients of the left hand side, or implicit, terms are defined first. The implicit terms
for the second ADI sweep have exactly the same form as for the In'st sweep, but with _ replaced by _. By
defining DEL, METX, METY, and METT as the grid spacing and metric coefficients in the sweep direc-
tion, the same coding can be used for both sweeps. The variable RAX is equal to 1 for 2-D planar flow,
and the radius r for axisymmetric flow. This adds the r in front of the Jacobian coefficient matrices for
axisymmetric flow, but has no effect for 2-D planar flow. The 1/r coefficient in front of each term will be

added later. In this section of code, the coefficient ofAE r (part of B(IV,I,NEN,NET)) is set equal to r, not
1 as it should be. This will be corrected later.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: COEFE 153

Thesourceterm,orrighthandside,forthefirstsweepisdefinednext.Thedifferenceformulasusedto
computethesourcetermarethesameasthoseusedfor theimplicitterms.Theseformulasarepresented
in Section6.0of Volumei. Foraxisymmetricflow,theFortranvariableJI, whichisnormallydefinedas
l/J, is temporarilyredefinedasr/J before the COEF routines are called. This automatically accounts for
the r coefficient in front of all the flux vectors in the source term. The 1/r coefficient in front of each term

will be added later. This definition of JI adds an r in front of the AE_ -_ term that should not be there. This
will ,also be corrected later.

^

The coding for the source term for the second sweep, which consists only of AEr, comes next. The
definition of JI also adds an r in front of this term that should not be there.

And finally, tor axisymmetric flow, the entire equation is divided by the local radius r. This adds the
^

1/r coefficient where it should be added, and removes the r in front of the AEr terms.

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2.]'he subscripts on the Fortran variables A, B, C, and S may be confusing. The ftrst subscript is the
index in the non-sweep (i.e., "vectorized") direction, and the second subscript is the index in the sweep
direction. For sections of the code that apply to both sweeps (i.e., the implicit terms and the division
by r aT the end), the first two subscripts are written as (IV,I). For sections of the code that apply only
to the first sweep, the ftrst two subscripts are written as (I2,I1). For sections that apply only to the
second sweep, they are written as (II,12). The third subscript on A, B, C, and S corresponds to the
equation. And, for A, B, and C, the fourth subscript corresponds to the dependent variable for which
A, B, or C is a coefficient.

3. The coding of the extra coefficients and source terms in the axisymmetric form of the equations is
separate from the rest of the coding, and is bypassed if the flow is not axisymmetric. Similarly, the
coding of coefficients and source terms involving the swirl velocity is separate from the rest of the cod-
ing, and is bypassed if there is no swirl.

4. The Euler option is implemented simply by skipping the calculation of the coefficients and source terms
for the viscous and heat conduction terms.

5. The thin-layer option is implemented by skipping the calculation of the coefficients and source terms
for the viscous and heat conduction terms containing derivatives in the specified direction.

154 PROTEUS 2-D Subprograms: COEFE PROTEUS Programmer's Reference

Subroutine COEFX

Called by Calls

EXEC

Purpose

Compute coefficients and source term for the x-momentum equation.

AI3qlA

* ALPItA1, ALPHA2

DEL

DPDRIIO, DPDRU, DPDRV,

DPDRW, DPDET

1)TAU

DXI, DETA

ETAX, ETAY, ETAT

IAXI

IBASE, ISTEP

* 1EULER

ISWEEP

* ISWIRL

* H'ttiN

1V

I1, I2

Jl

METX, METY, METT

MU, LA

NEQ

N PTS

NR, NRU, NRV, NRW, NET

NXM

P

RAX

* RER

RttO, U, V

RHOL, UL, VL

Spatial difference centering parameter _ for the sweep direction.

Spatial difference centering parameters a_ and %, for the _ and r/
directions.

Computational grid spacing in sweep direction.

Derivatives Op/Op, Op/@(pu), Op/O(pv), Op/O(pw), and Op/OE r.

Time step Av.

Computational grid spacing A¢ and At/.

Metric coefficients 'Ix, _/y(or r/, if axisymmetric), and _/,.

Flag for axisymmetric flow.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Flag for Euter calculation.

Current AI)I sweep number.

Flag for swirl in a_symmethc flow.

t:lags for thin-layer option.

Index in the "vectorized" direction, i,.

Grid indices i and j, in the _ and _/directions.

Inverse Jacobian of the nonorthogonal grid transformation, j-i
(times the radius r for ahsymmetric flow.)

Derivatives of sweep direction computational coordinate with re-
spect to x, y (or r if axisymmetric), and t.

Effective coefficient of viscosity/2 and effective second coefficient
of viscosity 2 at time level n.

Number of coupled equations being solved, N,q.

Number of grid points in the sweep direction, N.

Array indices associated with the dependent variables p, pu, pv,
pw, and E r.

Array index associated with the x-momentum equation.

Static pressure p at time level n.

1 for two-dimensional planar flow, and the local radius r for
axisymmetric flow.

Reference Reynolds number Re.

Static density p, and velocities u and v at time level n.

Static density p, and velocities u and v from previous ADI sweep.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: COEFX 155

TttX

XIX, XIY, XIT
Y

Parameters0_, 02, and 03 determining type of time differencing for
the x-momentum equation.

Metric coefficients _, _y (or _, ff axisymmetric), and _r

Radial coordinate r for axisymmetric flow.

A, B, C Coefficient submatrices A, B, and C at interior points (row
NXM only).

S Source term subvector S at interior points (element NXM only).

De_'ription

Subroutine COEFX computes the coefficients and source term for the x-momentum equation.
Equations (8.5a-b) in Volume 1 represent, in vector form, the four governing difference equations for the

two ADI swccps for 2-I) planar flow. The elements of the inviscid flux vectors !_ and f: are given in Section

2.0 of Volume 1, and the elements of the viscous flux vectors fCvl, Ev:, etc., are given in Appendix A of
^ A ^ ^

Volume I. The Jacobian coefficient matrices 0E/0Q, OEvI[OQ, etc., are given in Section 5.0 of Volume 1.
Using "all of thcsc cquations, the diffcrcnccd form of the x-momentum equation for 2-D planar flow may
bc written for thc two ADI sweeps as 19

Sweep 1 (_ direction)

A *

6(pu); +

+

(I +02)A ¢ t 0Q i-I ;+l

n n A, _ n n A, _e .n n A_* -I01At [(fi--I + £) gi-lAQi-1 (f/--1 + 2f/+f/+l) gi AQi + (f/+ Ji+l) gi+l u/+lJ
(1 + 02)2(AQ 2 =

1+ o_ (6_E_+ a,l-'_) + a_(r<)_ + a,,(vv,)_]

,', Ix n /x A -,n-I 02
(I I++0203)AT [6¢(Ev2)2 + 6q(Fv2)2] 103At+02[6¢(Ev=)2 + 6n(Fva)zJ + 1 + 0------7A(?u)n-I

Sweep 2 (_l direction)

(t +o+,,,°'A" I /d:')"/ _" ,,{" o7,)j/---_ fo,_V']- a ----7- AQ)_ l -I-(2a - AQ; -t-(l - _)/_ / AQ5+l^n, ,_, ",,o<, ,,,o,,/,+,
o,a, [(f,--, +/,./'gT-I,',6L,- (/j-, + 2_+&,)"g,.",,,(_'+(/j+ &,-" " -_" ') ga+latld+lJ =

(1 + 02)2(A,1) 2

A(pu)

In the above cquations, the subscripts i and j represent grid point indices in the _ and r/ directions. For

notational convenience, terms without an explicitly' written i or j subscript are understood to be at i or j.

These equations are written assuming the energy' equation is being solved. For a constant stagnation enthalpy case,
the total energy' E r would not appear as a dependent variable, and the Jacobian coefficient matrices would have
only three elements.

156 PROTEUS 2-D Subprograms: COEFX PROTEUS Programmer's Reference

On the left hand side, f is the coefficient of _/O_ (or ,?/ca,l, depending oil the swecp) in the _?l).r,/_Q (or
a ^

c_Fq/_Q) Jacobian coefficient matrix. Similarly, g is the term in the parentheses tbll{}wing P/,:_ (or 0/&1)

a _" _^ (or #i:vJ_?()) Jacobian coefficient matrix.in the cEv,/cQ

The vector of dependent variables is

1
0 = 7 [p *'_ p'' &it

The appropriate elements of the inviscid flux vectors are Wen by'

1
122= 7 [(Pu2 +;)_ + pu%, + pu_,]

" l

F2 = 7- [(Pu2 + V),7_+ pta%, + ,,u,7_]

The appropriate elements of the non-cross derivative viscous flux vectors arc

1 I ._ .2
(i_:_,,)2= 7 Ti,. " . " 0

(iq,,)2 1 l _ 2 -= 7 i_V I-J,,1..,,.+ z,7.(,1;,.,_ ,lye'.)+ _,Ty(,l>,u._-,7.o'_)]

And the appropriatc elements of the cross derivative viscous flux vcctors arc

'" 1 1

(E_?)2 -- .I R,, r [2t*_ plxUr; + "a'_x(rlxUrl + 'lyvrl) + ta_Y('l)'U'l + '10"1)]

• ' r- , - " •

(F_)2_ .11 Rerl [2u_I' - _,'_xu_ +,_._l_{{_u_ + s>3_=)+tz_lv(_ta__ , + Q_w-)l

The elements of the .lacobian coefficient matrix 0i:hTQ for the invi>cid lc,,ns in thc x-momentum

equation are

where f, = u_, + v,_,.

The clcmcnts of the .lacobian coefficient matrix Ol';q/_?Q for the viscous tcnns arc

A (, <)1_?(Ev,)2 1 _?l;v_ 0 1 _?

Rer aQ 21

whcFc

i /,

?Et, t

_Q 3 (u c? v
21

- _.2 2
Stxx = (2_ + "-)sx + _¢_

PROTELS 2-D Programmer's Reference PROTEUS Subprograms: C{}EFX 157

% = (u + ;-)G_y

^ ^ ^ ^ ^ ^

The Jacobian coefficient matrices c_F2/0Q and O(Fvt)2/c3 _ have the same form as aE2/a Q and O(Ev_)2/c_Q,
but with ¢ replaced by rr

As an example of how these equations are translated into Fortran, consider the A(pu/J) term on the left

hand side for the first sweep. This is the second element of Q, so using the second element in 0_2100, and

including the A(p_u)_ term, we get for the inviscid term

A(IV,I,NXM,NRU) -

B(IV,I,NXM,NRU) -

C(1V,I,NXM,NRU) -

01(Az)i,j

(1 + 02)A¢

Ot(Ar)i,y

(1 + 02)m_

0_(Ar)i,)

(I+ 02)A_

[(--_t) (_t)i--l,j + (l'tCx + l"_y)i--l,j + (U_x)i--!,: + _ Cx i--l,j

I (OP)1+1(2_,- 1) (_t)i,j + (uCx+ v_y)i,; + (uG)i,; + _ G _,;

[(")1(1 - _) (_t)i+l,: + (u_ + VCy)i+14+ (u¢_)i+l.y + _ _ i+l,y

For the viscous terms on the left hand side, we use the second element in O(Ev_)2/OQ, which is

lRer

Thus f= aJRe, and g = lip. To add the viscous contribution to this part of the A coefficient submatrix,
we therefore set

A(IV,I,NXM,NRU) = A(IV,I,NXM,NRU) -
Ol(A'r)i,j

(1 + 02)2(A¢)2Rer

1
[(°Cxx)i-l,j + (°_xx)i,j](--fi-)i_l,)

Similar equations may be written for the B and C coefficient submatrices.

The equations for axisymmetric flow are developed in Appendix B of Volume 1. The axisymmetric

x-momentum equation for the two ADI sweeps is given by 2°

Sweep 1 (_ direction)

^ ,

±(pu), +

+

0tAr I --_ AQi_l+(2ct-1) r-----7-] AQi+(I-a) r 0E----L2 AQ,_I

(1-t-02)A ¢ r r OQ .,/t 1 0Q //i aQ /,+1 .._J

1 _ _ "" n ,1 ^" + (r,f_ + r,.if.t) g_.IAQ_.I]OtAz _ I(ri_lf_l + r,f_) g,_IAQi_I -- (r/_l f__ 1 + 2r, f_ + r,_tf+l) g_ AQi n n _' =
(1 + 02)2(A_) 2

A_r l ^ ^ n A_" 1 (1_ Vl) 2 ^ nl +02 -# [6¢(rE2)+6"(rF2)] + I +02 7 {6,[r]+6.[r(Fvl)2]}

^ n

(I +03)AZl+ 02 #l{6'[r(Ev2)2]+6"[r(FV')2] }- 103Am+02 _I {6¢[r (l_)2] + ',P_(%)_lt__:-' + _°' ,,_o,,-"^ "°-'

20 These equations are written for the general case with swirl. For a non-swirl case, the swirl momentum pw would
not appear as a dependent variable, and the Jacobian coefficient matrices would have only four elements.

158 PROTEUS 2-D Subprograms: COEFX PROTEUS Programmer's Reference

Sweep 2 (r/ direction)

" OF2 _ " n

011" 1 _ cF2 A6]_x+(2]-I) r 06 j OQ //,+1 ._la_); + (1+ o_.)a, r _ 06 , ,

(1 + 02)2(an)2 7 (r/-lf] -l + 91d) gd IAQJ -1 -- (9-1fJ -1 + 29£ + 9+lfJ *l) g; AQj + (r;fj + rj+lfj+l) gj+IAQj_I

a#/

where now

1
6=--j- [P pU pV pW ET] T

A 1
E2 = 7 [(pu2 + P)G + pz_'G + puit]

A 1
F 2 = -)- [(pu 2 + p)r/x + pm'rl r + Pmlt]

^ 1
(EvI)2- j

^ 1
(Fv02 J

1{2 I 1 1 }Re r 2/_xu¢ +)-Ix fxU¢ + -F ir(rV)_ + Nfr(!rU¢ + Ixv_)

] {2#rl2U_l+,2-rlx[rlxUrl++rlr(rV)rl]+12rlr(IlrU_l+rlxVq)}Re r

^ 1
(Ev2)2- j

" 1
(Fv2)2- j

l r/r(t-V)r/] + It_r(rlrUrl + r/xl"r/)}
Re r

1 ir(r.v){] -I- I._rlr(_rU¢ + _xV_)}
Re r

^ ^

The elements of the Jacobian coefficient matrix OE/OQ for the inviscid terms in the axisymmetric form
of the energ3 ' equation are

/X

06- -_p ix- ufll Ct + fl + Uix + O--_ ¢x U_r + O_pv) ix O(pw) Ix OET ix

where f = u_= + v_,.

^ ^

The elements of the Jacobian coefficient matrix OEvl/O Q for the viscous terms are

, ,]o6 =="L\ 04/_,

where

0 _ O u 0 v , v

- =-_xx-_-i _ -_x,-b2- -; -=_,-;r,
4Q 2_

• 2 2
%x = (21, + Z)_x + ,u_ r

'xr= (+ ;)GG

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: COEFX 159

r

As in 2-I) planar flox,, the Jacobian coel_cient ,natri,:c's ¢7_'2/__ and O(fv,)2[_ _ have tile same form as

¢_[:'_2/,36 and ,)(i.v.,)2/,_O, but x,-ith _ replaced by 'l.

Note that tile equations tier 2-I) planar and axisymme*ric tlow are very similar. In the axisymmctric
equations there are some additional terms inw_lving thc radius r in the viscous flux vectors, with corre-
sponding terms in the .l_icobian coefficient matrices. "lhe radius r appears as an additionM coefficient in

front of the flux vectors l_V.,i_, etc., and in front of the Jacobian coefficient matrices c_ll;2/OQ, *?(l_;v),/'?Q,
etc. In addition, 1/r appears in front of every, term in the equation except the A(pu) terms. In PRO'i'i!I. TS,
the Fortran variables are defined in such a way that, for many terms, the same coding can be used for both
2-I) pl_mar and axisvmmctric flow. Unfortunately, this may make some of lhe coding a little confusing.
It is hoped that this dcttdled description, when compared with the source listing, wilt help makc things clear.

In COI:.t=X, the coefficients of the left hand side, or implicit, terms arc defined first. The implicit terms
for the second ..\l)l sxvecp have exactly the same form as t\)r the tirst sweep, but with { replaced by' _1. By
defining I)['.1 , MI/I'X, Xll:lg, _md Nll!'l"l" as the grid spacing ,'rod metric coefficients in the sweep direc-
tion, the same coding c:m bc _lse_t for both sweeps, lhe variable RAX is equal to 1 for 2-I) planar tlow,
and the radius , for axisymmctric tlow. "lhis adds the r i_l front of the Jacobian coetticient matrices for
axis} mmctric ilow, but h:ts ilo _.fl'cct 10r 2-I) planar flow. The l/r coefficient in front of each tcHn will be
added later. In this section of code, thc coefficient of A(j}¢) (paa-t of B(1V,I,NXM,NI_./;)) is set equal to r,
not 1 as it should be. lhis will be corrected l:iter.

"ihc source term, or right h:md side. for the first sweep is defined next. The difference fi)nnulas used to
conlpute the source term are *he same as those used for the implicit terms. These formulas are presented
it1 Section 6.0 of Volume 1. l:_r _lxis) mn_ctric tlov,% the l:ortran variable Jl, which is normally defined as
l/J, is temporarily redefined as r/.l before the COI{F routines are called. This automatically accounts for
thc r coeft'tcicnt in front of all the tlux vectors in thc source tenn. The 1/r coefficient in front of cach term
will be added I:it_'r. lhis dctinition _)f.ll ;tdd'_ an ,- in front of the A(p'u) _' 1 term that should not bc there.
This will :dso bc c()rrectcd l:tlcr.

"Fhc coding for the s_t_rcc tenn for lhe second sweep, which consist_ only of A(_u)', comes next. The
dcfinitioti of Jl also adds an r in front of tttis tcnn that should not be there.

And finally, fi)r axisvmmctric tlow, the entire equation is divided by the local radius r. This adds the
l/r coetlicient where it should be added, :rod rcmo;'es the r in front of the A(p_z_) terms.

renl:u'ks

i. 'lhis _ubroutine t,scs o_c-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. The subscripts on thc l:ortran variables ix., B, C, and S may be confusing. The first subscript ix the
index in the non-sx_eep (i.e., "vectorized") direction, and the second subscript is the index in the s_veep
direction, l:or scctiot_s of the code that apply to both sweeps (i.e., the implicit terms and tile division
b\" r at the end), the first two subscripts ark written as (IV,I). For sections of the code that apply only
to the first sweep, the tirst two subscripts arc written as (I2,I1). For sections that apply only to the

second sweep, the,, :,re _vrittt:n as (I1,12). l'hc third subscript on A, t], C, and S corresponds lo the
cqualion. And, for ,-\, B, and C, the t'ourth subscript corresponds to the dependent variable for which
A, B, or (2 is _, coctlicient.

3. The coding of the extra coefficients and source terms h_ the a.,dsymmetric form of the equations ix
separate from the rest of the coding, and is bypassed if the flow is not axis)-mmetric. Similarly, the
coding of coefficicnts and source temps involving the swirl velocity is separate from the rest of the cod-
ing, and is bypassed if thcrc ix no sxvirl.

4. "lhc l!uler option is implemented simply by skipping the calculation of the coefficients and source terms
for tile viscous terms.

160 PROTEUS 2-1) Subprograms: COEFX PROTEUS Programmer's reference

5. Thethin-layeroptionis implementedbyskippingthecalculationof thecoefficientsandsourceterms
for theviscoustermscontainingderivativesin thespecifieddirection.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: COEFX 161

Subroutine COEFY

Called bv Calls Purpose

EXEC Compute coefficients and source term for the y or r-momentum
equation.

A|PIIA

* ALPIIAI, AI.PIIA2

DEL

DPDRIIO, DPDRU, DPDRV,
DPDRW, DPDET

DTAU

DXI, DETA

ETAX, F/I'AY, ETAT

IAXI

IBASE, ISTEP

* IEULER

ISWEEP

* ISWIRL

* ITtlIN

IV

I1, I2

Jl

ME'FX, METY, METT

MU, LA

NliQ

N H'S

NR, NRU, NRV, NRW, NET

NYM

P

RAX

* RER

RtlO, U, V, W

Spatial difference centering parameter a for the sweep direction.

Spatial difference centering parameters a I and %, tbr the _ and v/
directions.

Computational grid spacing in sweep direction.

Derivatives 8p/Op, Op/O(pu), dp/O(pv), Opl3(pw), and @p/OEr.

Time step At.

Computational grid spacing A_ and At/.

Metric coefficients _1_,_l_ (or _/, if axisymmetric), and _l,-

Flag for axisymmetric flow.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Flag for Eulcr calculation.

Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Flags for thin-layer option.

Index in the "vectorized" direction, (.

(hid indices i,andj, in the _ and q directions.

Inverse Jacobian of the nonorthogonal grid transformation, J
(times the radius r for axisymmetric flow.)

Derivatives of sweep direction computational coordinate with re-
spect to x, y (or r if axisymmetric), and r

Effective coefficient of viscosity _ and effective second coefficient
of viscosity 2 at time level n.

Number of coupled equations being solved, N,q.

Number of grid points in the sweep direction, N.

Array indices associated with the dependent variables p, pu, pv,
pw, and E r.

_M'ray index associated with the y-momentum (or r-momentum if
a.,dsymmetric) equation.

Static pressure p at time level n.

1 for two-dimensional planar flow, and the local radius r for
a_symmetric flow.

Reference Reynolds number Re,.

Static density p, and velocities u, v, and w, at time level n.

162 PROTEUS 2-D Subprograms: COEFY PROTEUS Programmer's Reference

RHOL, UL, VL

TIIY

XIX, XIY, XIT

Y

Static density p, and velocities u and v from previous ADI sweep.

Parameters 0,, 02, and 03 determining type of time differencing for
the)'-momentum equation.

Metric coefficients _,, _y (or _r if axisymmetric), and _.

Radial coordinate r for axisymmetric flow.

e\, B, C Coefficient submatrices A, B, and C at interior points (row
NYM only).

S Source term subvcctor S at interior points (element NYM only).

Description

Subroutine COEFY computes the coefficients and source term for the y-momentum equation for 2-D
planar flow, or the r-momentum cquation for axisymmetric flow. Equations (8.Sa-b) in Volume I repre-
sent, in vector form, the four governing difference equations for the two AI)I sweeps for 2-D planar flow.

The elements of the inviscid flux vectors _; and f" are given in Section 2.0 of Volume l, and the elements

of the viscous flux vectors _'%, f'.v2, etc., are given in Appendix A of Volume 1. The Jacobian coefficient

matrices Oi:./a(_, a£'-v/0£), etc., are Wen in Section 5.0 of Volume l. Using all of these equations, the
differenced form of thb y-momentum equation for 2-D planar flow may be written for the two ADI sweeps
as 2_

Sweep 1 (_ direction)

A *

A(pv)_+

+

01A,r OE 3 _,,. (?E 3 A. c3E 3

- -- AQ__ 1 + (2a - 1) 06 AQi + (1 - a) 0G A 1(l+02)A_ _ OQ _ s+_

OIAT [(fi-1 + fi) _i-I_QiL,- (fii-I + 2fi n n A. r2 n A. =n n +2+1) gi AQi + (_+ f/+l) &+IAQi+I]
(l + o2)2(±,:)_

A A . /'1

l+O 2 (6_E_+a_F3) 4 1+0 2

A A n 03At A .n-1 02
(1 + 03)Z_r [6;(Ev2) 3 + 5,7(F_.2)3] [6¢(_]v2)3 + 5'7(Fv2)3J + 1 +0---- T A(P_v)n-I1 +02 1 +02

Sweep 2 (_/direction)

-a AQ)_ 1 + (2_- 1) O'---_- I_] + (1- a) AQ)+,
(1 + 02)Ar/ -_ J+_

,'1 n A rl r x_ /'I --_,_l

o;_xT E(g-1* aS)'gf-,aQJt, -(f/-, + 2_ +_+,) #. zsQ)+(_+]j+O g],,av]+,]=
(1 + 02)2(A_1) 2

A *

A(pv)

These equations are written assuming the energy equation is being solved. For a constant stagnation enthalpy case,

the total energ 5 E r would not appear as a dependent variable, and the Jacobian ¢oetlicient matrices would have

only three elements.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: COEFY 163

In theaboveequations,thesubscriptsi and j represent grid point indices in the _ and r/directions. For
notational convenience, terms without an explicitly written i or j subscript are understood to be at i or j.

On the left hand side, fis the coefficient of O/d_ (or 0/0r/, depending on the sweep) in the OEvt/OQ (or

a[:v_/0(_) Jacobian coefficient matrix. Similarly, g is the term in the parentheses following 0/0_ (or O/Oft)

in the 0Ee_/<gQ (or 0FvJ<gQ) Jacobian coefficient matrix.

The vector of dependent variables is

1
=-)-D Erl T

The appropriate elements of the inviscid flux vectors are given by

A 1
E3 = 7 [pUV_x + (pv2 + P)_Y + pv_t]

A 1
F3 = -)-- [Pm'_lx + (P v2 + P)ny + P vvlt]

The appropriate elcments of the non-cross derivative viscous flux vectors are

1
(Eel)3- j

A 1
(Ftq)3- j

1
Re r [2#_y2v¢ + 2_y(_xU _ + _yV_) + la_x(_yU _ + _xv_)]

1 2
Re r [21arlyVr7+).rly(rlxU_ + rlyVrt) + Urlx(VlyUrl+ _IxVrt)]

And the appropriate elements of the cross derivative viscous flux vectors are

A 1
(Ev2)s- j

1
(F_)3- j

1

Re r [2#_yqyVrt + 2_y(VlxUrt + rlyV_7)+ U_x(rlyU_ + rlxVrl)]

1

Re r [21arlyCyV¢ +).rly(_xbt ¢ + _yV_) q- #rlx(_yU ¢ -t- Cxv_)]

The elements of the Jacobian coefficient matrix <91_/<90 for the inviscid terms in the y-momentum
equation are

where f = u_ + v_y.

^ ^

The elements of the Jacobian coefficient matrix <gEvJOQ for the viscous terms are

_ _ <9 l 0 1

<gQ Rer @Q 31

where

O. = O u <9 v

164 PROTEUS 2-D Subprograms: COEFY PROTEUS Programmer's Reference

_yy = #_x 4- (2/2.+ Zs_v

The Jacobian eo_mcient matrices ofuoQ and a(f2.,)d0Q ha,'e the same f,,nn as 0fi_l?Q :._d o(f',.Jd06,
but l_ith _ replaced b$ ft.

As an cx:unplc of how these cqualions are translated inlo t:ol-tran, consider the AIp1U/) term on Ibe left

hand side for the first sweep. This is the second element of Q, so using lhe second element in ,_1":,/3(,), we

get R>r thc inviscid term

r r - _ -,A(I'v ,I,Nh' M,. P,L) -

BdV, J NYM,NRU)

C(IV,I,NYM,NRU) -

(i + o,)A. _ (-'_) (_'¢J"-_,J + ,%,,,) s_'
- ;], /

(I +02)A_ (2_ l) (;gQ<,7+ , /'(t'ti_ _..;

I)]Ol(Ar)i,J ''i' "

(l +02)A,_ tl -<_') (_"_)'_l-i+ 3(f]n)-_Y,i+l,j

For the viscous terms on the left hand side, we use the second clcmc_.l in ,7(E,,)<//O, wliich is

Re_ <_xy_7 77-

Thus f= _x,_fRe, anti g = lip. To add the viscous contribution to this part of the ._ coefficient submatrix,
\re thcretorc set

A(IV,I NYM,NP,[;) = A(IV,I,NYM,NRU) - l')l(Ar)"'J [(_,._)i J-('_V)i,j]("-tl_ -)i--l,j
7 "> _'' i,j(I+L2I_(A_ 17(_

Similar equations may be written for the B and C coefficient submatriccs.

lhc equations tier axisymmctnc flow arc developed in At_pcndix I:_ of Volume 1. "lhc :ixisymmetric

,-momentum equation for lhc two AI)! sweeps is _ven by >_

22 These equations are written for the general case with swirl. For a non-swirl case, the s_vlrl momentum pw would
not appear as a dependent variable, and the lacobian coefficient matrices x_ould have only four elements.

PR{}TEUS 2-D Programmer's Reference PROTEUS Subprograms: COEFY 165

Sweep 1 (¢ direction)

a_dv),; +
01Az 1

(1 + 02)A _ r

01Az

(l + O2)2(AD2

01Az
+

1 +02

At
+

1+02

03Az

1 +02

[_((]
7 (r_-iJ;-i + r,_) g,_lAQi_i - (r,_l__ l + 2r_ + r,+l_+i) g1AQ, + (rt_ + r,+l_+l) g_+iAQ<+l

l oil3 a(Hv)_ 6;- a: l ^ _

| ^ ^ a

(l_v,)3] 6n[r(Fvi)3]+(Hv)3} + (l +0,)A'r , ^7{<' + , +o, 7.{<'_':_'}+<'<G>_]}°

1 6_[r ^ -na-I 027.{6_[r<G_)_]+ _Fv2)q_ +_--;-_a_;,)°-'

Sweep 2 (r/ direction)

01A¢ 1 dr3 A6}1+(2_-1) r_] Qj+(1-a) r----;-I AQ;+_/
A(pv)j + (I + 02)Ar # # - a c_Q ls-I 8Q /s 8Q /:+l ._]

01a'_ 1 + rj fs)ngT_ iAQ:_l _ (rj_lk l+2rsf_+rs+lf_+l)gsAO:+(rsfj+rs+lfj+t)gs+taQ:+i
(l + 02)2(A,7)_ 7 (rs-t/s-_ =

^ •

a(pv)

where now

^ 1
Q=7 [P pu pv pw I':7.]:r

^ I
E3= 7 [p_G + (pv2+ P)G + pvG]

^ l
F3 = _- [puvn_ + (pv 2 + p)u, + pv,lt]

(Ev,)3 - Y 1_, 2#xGv¢ + 2G _xu¢ + --F G(rv)¢ + s_#:<(Gu¢ + #xv¢)

{2 [1] }(FVi)3^ -- dl Rerl 21arlrVtl +)'iTr lqxUrl + 7- rlr(rV)rl + Ixrlx(VlrUtl + 17xvr#)

{ [,] }1 I 2#_rqrV,r q-)'_r rlxUrl + "-_ r/r(rV)r/ -I'- #_x(rlrUrl q- VlxVrl)
(Ev2) 3 -- j Re r

{ [,] }I I 2_r_rV_ + 2., Gu¢ + --F G(rv)_ + #mx(GU_ + G:v_)
(Fv2)3- d Re r

A 1
H 3= -_ (-p - pW 2)

^ 1 1 {_2#xv)- }(Hv)s - d Re r 7 -)-(_xbl_ "+- rlXUrl) + -7" [_r(t'ls), r + lqr('rV)r/]

The 121and 12Ivterms, which do not appear in the 2-D planar form of the equations, result from the non-

conservative form of the axisymmetric equations.

166 PROTEUS 2-D Subprograms: COEFY PROTEUS Programmer's Reference

The elements of the Jacobian coefficient matrix 0E/00 for the inviscid terms in the axisymmetric form

of the energ7 equation are

_Q -_p _r - vf l l" _x + o-_ _r

Op Op
_, + A + v¢, + _ _ O(pw)-- _r OE T _r

where fl = u_x + re,.

The elements of the Jacobian coefficient matrix OEv,/OQ for the viscous terms are

a(Ev_h] a l a l i
- ,.. o-T(-fi-) Ctrr-ff-_(=_- +a'..-=_r, 0 0

where

() t;)
a t a a , v

- =--O_xr-- _- --Ctrr-- _- --O_rr --fi-r ¢
aQ 31

,). 2
_rr = -7- _r

^ ^

As in 2-D planar flow, the Jacobian coefficient matrices 0F3/SQ and a(Fvl)3/00 have the same form as

oi_3/a 0 and O(Ev))3/O0, but with ¢ replaced by)I.

The elements of the Jacobian coefficient matrix a_l/OQ are

A •]OH 3 _ [Op 2 ap Op ap 2w Op0(_ - _ + w O(pu) O(pv) O(pw) 8E T

^ ^

The elements of the Jacobian coefficient matrix OHv/OQ are

0(Hv)3 _ I 8Hv OHv OHv 0 0
A

6_Q Rer 63(_ 31 °(_ 32 6q(_ 33

where

(A)OHv u

0Q 31

1 v 0
-'F [2/./, 4-).(_:rr_ q'- rlrFrl)]-=F-- fi- -1-),rt r _ _ -_-)

/ \

(A)OHv 1

0Q 32

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: COEFY 167

, _'Q 33
_ 04 - -[2;. +).(_rr_+rbr,7)] 1 1)_/r 0 (1)77 ,37 7-

Note that, except tot the additional l_l and I21_.terms, the equations for 2-I) planar and axisymmctric flow

are very .qmilar. In the axisynmletric equations there are some additional terms involving the radius r in
the viscous flux vectors, with corresponding terms in the Jacobian coefficient matrices. The radius r appears

a._ an additional coefficient in front of the flux vectors/';, i'-v_, etc., and in front of the Jacobian coefficient

matrices ,'i':.3/c_Q, ?(E_.,).J(?Q, etc. In addition, 1/r appears in front of every term in the equation except the
A{_r) terms. In t_R(]TI_[TS, the Fortran variables are defined in such a way that, for many terms, the same
coding can be used for both 2-D planar and axisymmctric flow. Unfortunately, this ma) make some of the
coding a little conh_sing. It is hoped that this detailed description, when compared with the source listing,
will help make things clear.

In COI!F'{, the coefficients of the left hand side, or implicit, terms are defined th'st. With the exception

of the fl and i)I_. terms, which only appear in the first ADI sweep the implicit terms for the second sweep
have exactly the ._ame tonn as tbr the first sweep, but with { replaced by r/. By defining DF.I., .MF/I'X,
Mt{TY, and MFTT as the mid spacing ,and metric coefficients in the sweep direction, the same coding can
bc used fi)r both sweeps. The variable RAX is equal to 1 for 2-D planar fow, and the radius r for
axisymmetric flow. This adds the r in front of the Jacobian coefficient matrices for axisymmctric tlow, but
has no effect for 2-D plan_ flow. The l/r coefficient in front of each term will be added later. In this
section of code, the coefficient of k(p'v) (part of B(IV,I,NYM.NRV)) is set equal to r, not 1 as it should
be. This will bc corrected later.

The source term. or right hand side, for the first sweep is defined next. "Ihe diflcrence formulas used to
compute the source term are the same as those used for the implicit terms. These fommlas are presented
in Section 6.0 of Volume 1. For axisymmetric flow, the Fortran variable JI, which is normally defined as
1/.I, is temporarily redefined as r/J before the COEF routines are called. This automatically accounts for
the r coefficient in front of all the flux vectors in the source term. The 1/r coefficient in front of each tcnn
will be added later. This definition of JI adds an r in front of the A(fiv F _ term that should not be there.
This will also bc corrected later.

The coding for the source term for the second sweep, which consists only of zX(fiv)', comes next. The
definition of Jl also adds an r in front of this term that should not be there.

And tinally, for axisymmetric flow, the entire equation is divided by the local radius r.]his adds the
l/r coefficient where it shuuld be added, and removes the r in front of the A(p'v) terms.

Remarks

1. lhis subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the
index in the non-sweep (i.e., "vectorized") direction, and the second subscript is the index in the sweep
direction, l:or sections of the code thai apply to both sweeps (i.e., the implicit terms and the division
by r at the end), the first two subscripts are written as (IV,l). For sections of the code that apply only
to the first sweep, the first two subscripts are written as (I2,11). l:or sections that apply only to the
second sweep, they are written as (I1,I2). The third subscript on A, B, C, and S corresponds to the
equation. And, for A, B, and C, the fourth subscript corresponds to the dependent variable for which
A, B, or C is a coefficient.

3. The coding of the extra coefficients and source terms in the axisymmetric form of the equations is
separate from the rest of the coding, and is bypassed ff the flow is not axisymmetric. Similarly, the
coding of coefficients and source terms involving the swirl velocity is separate from the rest of the cod-
ing, and is bypassed if there is no swirl.

4.]'he [!uler option is implemented simply by skipping the calculation of the coefficients and source terms
for the viscous terms.

168 PROTEUS 2-D Subprograms: COEFY PROTEUS Programmer's Reference

5. The thin-layer option is implemented by skipping the calculation of the coefficients and source terms
for the viscous terms containing derivatives in the specified direction.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: C OEFY 169

Subroutine COEFZ

Called by Calls Purpose

EXEC Compute coefficients and source term for the swirl momentum
equation.

AI.PIIA

* AIPtIAI, AI.PHA2

DEL

I)TAU

l)Xl, I)IiTA

I;TAX, F.TAY, ETAT

IBASE, ISTEP

* IEUIER

ISWEEP

* ITtlIN

IV

I1, I2

Jl

METX, METY, METT

MU

NEQ

N PTS

NR, NRU, NRV, NRW, NET

NZM

RAX

* RER

RIIO, U, V, W

RttOL, WL

* TtIZ

XIX, XIY, XIT

Y

Spatial difference centering parameter _ for the sweep direction.

Spatial difference centering parameters e_ and _2, for the ¢ and r/
directions.

Computational grid spacing in sweep direction.

Time step Az.

Computational grid spacing A_ and A_/.

Metric coefficients vL, fly (or r/, if axisymmetric), and _h.

Base index and multiplication factor used in computing onc-
dimcnsional index for two-dimensional array.

Flag for Eulcr calculation.

Current ADI sweep number.

Flags for thin-layer option.

Index in the "vcctorized" direction, i,.

Grid indices i and j, in the ¢ and r/directions.

Inverse Jacobian of the nonorthogonal grid transformation times
the radius, rJ 1.

Derivatives of swcep direction computational coordinate with re-

spect to x, r, and t.

Effective coefficient of viscosity/_ at time level n.

Number of coupled equations being solved, -V,q.

Number of grid points in the sweep direction, N.

Array indices associated with the dependent variables p, pu, pv,
p w, and E r.

Array index associated with the swirl momentum equation.

The local radius r.

Reference Reynolds number Re,.

Static density p, and velocities u, v, and w, at time level n.

Static density p and velocity w from previous ADI sweep.

Parameters 0_, 02, and 0t determining type of time differencing for

the swirl momentum equation.

Y,letric coefficients _,, _y (or _, if a.'dsymmetric), and _.

Radial coordinate r.

170 PROTEUS 2-D Subprograms: COEFZ PROTEUS Programmer's Reference

A,B,C

S

Description

Coefficient submatrices A, B, and C at interior points (row NZM

onb).

Source term subvector S at interior points (clement NZM only).

Subroutine COFFZ computes the coefficients and source term for the swirl momentum equation, which

is only valid in axisymmetric flow. The equations for aMsymmetric flow are developed in Appendix B of

Volume 1. The swirl momentum equation for the two ADI sweeps is given by 23

Sweep I ({ direction)

[(.... ()i]()E 4 \ ^. c)E, 0E 4

(l +02)A ¢ 7" - :_ r -- 6_ +(1 --a) r -- A6_+l
bO/<i

(1 + 02)2(A_) 2 7 (r_..lf__l +r_f) g_ IAQi_I- (ri_lf__ 1 +2r, f_+rt.lfr+l)g,._Q , +(rtf_+rt+lfj+l)g._lAQt.i

o>_.-i ofi_ o(l't_)_ 6;= _, , a, l ^ ^ °
1 +02 7 C_2 ?a ' +82 7 [6,(rE<i)+d. (rF_l>+''4] + I *02 7 {6,Jr]+6.[r(Fvi)._]+(llv).l}

o,,,<,Vh z ;o;+4 ' ,(l+03)_r l {64[r(l_v2)-l}+d.[r(v2)a]} I+02 7 (Fv2)°'JJ + 1--+--'_2&('Qw)02"" ^ .n-II +02

Swoop 2 (rl direction)

" . OtA_ 1 31_a _. DF,_ A6; + (1 -- a) r AQ;+,AQ/ i+(2a--1) r ---7-
A(p_v), + (1 +02)Ar/ r -. r 7 j I c>Q 2 aO /j÷i _J

0,L_: ' [(#'j-l_ 1 n n ^n n n ^n F/+IjSj. I) el+l/till.|}

(t + 02)2(A,1) 2 7 . + rjf) g_laQa_t - (0-1_-1 + 2rjfj + ra+lfy+l) gs AQ5 + (rjfj + n n n =

±WW)"

Ira tim above equations, the subscripts i and j represent grid point indices in the _ and _ directions. For

notational convcnicnce, terms without an explicitly written i or j subscript are understood to be at i or j.

On the lcfl hand side, fis the coefficient of glc?_ (or 0/6_, depending on the sweep) in the 6 vii Q (or

i:vj6Q) Jacobian coefficient matrix. Similarly, g is the term in the parentheses following 0/0 (or O/0_)

in the c_Ev_/c_() (or c_'vjd(_) Jacobian coefficient matrix.

The vector of dependent variables is

1
6=TEP ,,u pv pw ET] r

The appropriate elements of the inviscid flux vectors are given by

2_ These equations are written assuming the energy equation is being solved. For a constant stagnation enthalpy case,
the total energy E r would not appear as a dependent variable, and the Jacobian coefficient matrices would have
only four elements.

PROTEI-S 2-D Programmer's Reference PROTEUS Subprograms: COEFZ 171

^ 1
E 4 = --)-- [puw_ x + pvw_ r + pw¢ t]

^ 1
F4= T D_w_ + pvwn_+ pwn_]

The appropriate elements of the non-cross derivative viscous flux vectors are

x2 2A 1 l (_,_w_+.rw 0
(Ev1)4-- j Re r

^ 1 l 2 2
-- (l_rl xWq "k- I.tqr Wq)(Fvl)4 J Re r

And the appropriate elements of the cross

^ 1 1

(Ev2)a- j Re r

derivative viscous flux vectors are

(#_xrlxW, l + #_r_IrW_ 7 -- #_r _--)

(Fv2)4_' _ J1 Rerl (tirlx_xW_ + fiVlr_rW _ _ laVlr _)

The extra terms resulting from the non-conservative form of the axisymmetric equations are

'_ 1
H 4 = -f pvw

(l-Iv)4--A Jl Rerl[ll(_rW¢q-rlrWrl)-t2_--]

The elements of the Jacobian coefficient matrix al_/00 for the inviscid terms in the r-momentum
equation are

A

0E 4
-[-_f: w_ w6 _,+y, 0]

where f = u_ + v_,.

^ ^

The elements of the Jacobian coefficient matrix OEvJaQ for the viscous terms are

8(EG)4 1 0 0 1

-- 1 0 0 _ZZ'-'_ --'p 0

OQ Rer 0Q 41

where

OEv_ 0

ao 41 "

_2 "-F _2%z =/a_x /a_r

The Jacobian coefficient matrices O['d00 and O(I:v,)dOQ. have the same form as OEdOQ and (v_)ddQ,
but with _ replaced by _.

The elements of the Jacobian coefficient matrix afilaQ are

172 PROTEUS 2-D Subprograms: COEFZ PROTEUS Programmer's Reference

A

_?H4
= [--VW

OQ

0 w v 0]

The elements of the Jacobian coefficient matrix _l_lv/SQ are

A]O(Hvh 1 0Hv 0 0 7 0

06 Rer aQ 41 OQ 44

where

OHv

0Q 41

.w
r p I'_rlr _ --

8Q aa
p 7

As an example of how these equations are translated into Fortran, consider the A(pv/J) term on the left
^ ^

hand side for the first sweep. This is the third element of 0, so using the third element in 0E4/0Q, and in-

eluding the contribution from the third element of 0fl4/30, we get for the inviscid term

A(IV,I,NZM,NRV) -

B(IV, I,NZM,NRV) =

0](Az)i,J 1

(l + 02) x r ,j

Ot(Ar)i,J 1 O](Ar)i,J 1

(1 + 02)A¢ ri,j (2_ - 1)[(rW_r)i, j] + 1 + 0 2 rL,j wi'j

Ol(Ar)i,J 1

(1 + 02)A_ ri, j
(1 - 00[(?'W_r)i+ 1,j]C(IV,I,NZM,NRV) =

For the A(pv/J) term, there are no viscous terms on the left hand side.

In COEFZ, the coefficients of the left hand side, or implicit, terms are defined first. With the exception

of the 171and 121v terms, which only appear in the first ADI sweep, the implicit terms for the second sweep
have exactly the same form as for the first sweep, but with ¢ replaced by ft. By defining DEL, METX,
METY, and METT as the grid spacing and metric coefficients in the sweep direction, the same coding can
be used for both sweeps. Since COEFZ is only used in axisymmctric flow, the variable RAX is equal to
the radius r. This adds the r in front of the Jacobian coefficient matrices. The 1/r coefficient in front of
each term will be added later. In this section of code, the coefficient of A(p]v) (part of B(IV,I,NZM,NRW))

is set equal to r, not 1 as it should be. This will be corrected later.

The source term, or right hand side, for the first sweep is defined next. The difference formulas used to
compute the source term are the same as those used for the implicit terms. These formulas are presented
in Section 6.0 of Volume 1. For axisymmetric flow, the Fortran variable JI, which is normally defined as

1/J, is temporarily redefined as r/J before the COEF routines are called. This automatically accounts for
the r coefficient in front of all the flux vectors in the source term. The 1/r coefficient in front of each term
will be added later. This definition of JI adds an r in front of the A(pw) "-_ term that should not be there.
This will also be corrected later.

^ ,

The coding for the source term for the second sweep, which consists only of A(pw), comes next. The
definition of JI also adds an r in front of this term that should not be there.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: COEFZ 173

And finally, the entire equation is divided by the local radius r. This adds the l/r coefficient where it
should be added, and removes the r in front of the A(p_w) terms.

Remarks

1. "['his subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the
index in the non-sweep (i.e., "vectorized") direction, and the second subscript is the index in the sweep
direction. For sections of the code that apply to both sweeps (i.e., the implicit terms and the division
by r at the end), the first two subscripts are written as (IV,I). For sections of the code that apply only
to the first sweep, the first two subscripts are written as (12,II). For sections that apply only to the
second sweep, they are written as (I 1,12). The third subscript on A, B, C, and S corresponds to the
equation. And, for A, B, and C, the fourth subscript corresponds to the dependent variable for which
A, B, or C is a cocfficient.

3. The coding of the extra coefficients and source terms in the axisymmetric form of the equations is
separate from the rest of the coding, and is bypassed if the flow is not axisymmetric. Similarly, the
coding of coefficients and source terms involving the swirl velocity is separate from the rest of the cod-
ing, and is bypassed if there is no swirl.

4. The Euler option is implemented simply by skipping the calculation of the coefficients and source terms
for the viscous terms.

5. The thin-layer option is implemented by skipping the calculation of the coefficients and source terms
for the viscous terms containing derivatives in the specified direction.

174 PROTEUS 2-D Subprograms: COEFZ PROTEUS Programmer's Reference

Subroutine CONV

Called by

MAIN

Calls Purpose

ISAMAX Test computed flow field for convergence.

CHGMAX

DUMMY

* EPS

* GAMR

* IAV2E, IAV4E

* ICTEST

* IHSTAG

* ISWIRL

IT

NEQ

* NITAVG

* NOUT

NR, NRU, NRV, NRW, NET

NTOTP

* N1, N2

RESAVG

RESL2

RESMAX

RGAS

RtlO, U, V, W, ET

RI{OI., UL, VL, WL, ETL

Output

CHGAVG

CItGMAX

Maximum change in absolute value of the dependent variables
from time level n- 1 to n (or over the previous NITAVG- 1
time steps if ICTEST = 2), AQ,,,,.

A two-dimensional scratch array.

Convergence level to be reached, _.

Reference ratio of spccific heats, y,.

Flags for second- and fourth-order explicit implicit artificia/
viscosity.

Flag for convergence criteria to be used.

Flag for constant stagnation enthalpy option.

Flag for swirl in axisymmetric flow.

Current time step number n.

Number of coupled equations being solved, N,q.

Number of time steps in moving average convergence test.

Unit number for standard output.

Array indices associated with the dependent variables p, pu, pv,
pw, and E r,

Cray PARAMET|iR specifying the storage required for a full
two-dimcnsional array (i.e., NIP x N2P).

Number of grid points N_ and A_, in the _ and _/directions.

The average absolute value of the residual at time level n, R,,_.

The I._ norm of the residual at time level n, RL_.

The maximum absolute value of the residual at time level n,

Rrnax.

Gas constant R.

Static density p, velocities u, v, and w, and total energy Er at time
level n + 1.

Static density p, velocities u, v, and w, and total energy Er at time
level n.

Maximum change in absolute value of the dependent variables,

averaged over the last NITAVG time steps, AQ._g.

Maximum change in absolute value of the dependent variables
from time level n to n + 1 (or over the previous NITAVG time
steps if ICTEST = 2), AQ

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: CONaf 175

ICONV

Description

Convergence flag; 1 if converged, 0 if not.

Subroutine CONV checks the computed flow field for convergence. Convergence may be based on: (1)
the absolute value of the maximum change in the dependent variables over the previous time step; (2) the
absolute value of the maximum change in the dependent variables, averaged over the last NITAVG time
steps; (3) the L2 norm of the residual for each equation; (4) the average residual for each equation; or (5)
tile maxinmm rcsidual for each equation. These parameters are defined in Section 4.1.5 of Volume 2.

The convergence criteria to be used and the level to be reached are set by the input parameters ICTI-ST
and t'II'S. Each dependent variable or equation is checked separately, and convergence is declared when the
specified level is reached for all of the variables or equations. The same criteria is used for each one, but
different levels may be specified.

Subroutine CONV first computes AQ the absolute value of the maximum change in each dependent
variable over all the grid points for the most recent time step. These values are stored in
CIIGMAX(IVAR,I), where IVAR varies from 1 to NEQ, the number of dependent variables. If
1(71'liS'l' = 2 (the so-called "moving average" convergence test), CttGMAX(IVAR,2) contains the ma_-
mmn change for the previous time step, etc.

Then, dcpcnding on the value of ICTEST, the chosen convergence criteria is compared with the level
to be reached for each dependent variable or equation, and a flag is set if the calculation is converged.

Remarks

1. l:or ICTFST = 1 or 2,_the change in Er is divided by R/(y, - 1) + 1/2. rl'his is equivalent to dividing
the dimensional value E r by

prR Tr pr u2

ET'= Yr--1 + 2

This makes the change in total energy the same order of magnitude as the other consen, ation variables.

2. For ICTtiST = 1 or 2, the convergence test is based on (or includes) the change in dcpendcnt variables
from time level n to n + 1. For IC'I'EST = 3, 4, or 5, convergence is based on the residual at time level

n, not n + 1. This is because the residuals at time level n + 1 are not computed until the marching step
from n + 1 to n + 2 is taken.

3. l:or cases run with artificial viscosity, the residuals are computed and printed both with and without the
_mificial viscosity terms. This may provide some estimate of the overall error in the solution introduced

by the artificial viscosity. Convergence is determined by the residuals with the artificial viscosity tcnns
included.

4. The Cray BLAS routine ISAMAX is used in computing the absolute value of the maximum change
m dependent variables.

5. The scratch array DUMMY, from the common block DUMMYI, is used to store the values of the
change in dependent variables for use by ISAMAX.

6. A warning message is generated if an illegal convergence criteria is specified. ICTEST is resct to 3
(convergence based on the/-2 norm of the residual), and the calculation will continue.

176 PROTEUS 2-D Subprograms: CONV PROTEUS Programmer's Reference

SubroutineCUBIC(IDIR,T,G,NOLD,TINT,GINT)

Calledby Calls Purpose
PAK InterpolationusingFerguson'sparametriccubic.

II)IR

I1, I2

NOI.D

* N1, N2

T

TINT

A two-dimensional array containing NOLD1 x NOLD2 values
of the function g(t) to be interpolated.

Direction flag; 1 if first subscript in G varies, 2 if second subscript
va/'ics.

Grid indices i and j, in the _ and ,/directions.

Number of values in dircction IDIR in array G (i.e., NOLD1 or

NOLD2.)

Number of grid points N_ and N_, in the ¢ and _t directions.

A one-dimensional array containing NOLD values of the inde-

pendent variable t.

A one-dimensional array containing N1 or N2 (depending on

IDIR) values of the independent variable t= t_, at which in-

terpolated values g,_, = g(t,_,) are desired.

Output

GINT A one-dimensional array containing N1 or N2 (depending on

I DI R) interpolated values gin, = g(t,_,).

l)escription

Subroutine CUBIC performs interpolation using Ferguson's paramctric cubic polynomial (Faux and

Pratt, 1979). Given the function g(t) and a value t..... CUBIC computes g,_, = g(t_,).

The function g(t) is specified by the Fortran arrays G and T. For a general value t, let

where t_ < t < tu. (I.e., t_ and ta are the two elements of the array T that bracket t.)

Between t= and td, assume g can be described by a cubic polynomial in t/, as follows:

g= a, + a2{/+ a3_ + a45_

Differentiating,

g' dg 3a4 t_
= d--gf= a2 + 2a39+

Noting that t;= 0 at t = t_, and 1 at t = ta, we get

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: CUBIC 177

Solving for a_ through a4,

gu=al

gu = a2

gd= al + a2 + a3 + aa

g_ =a 2+2a 3+3a 4

al =gu

a2 = g'u

a3 3(ga - gu) - "_ '= "gu -- g'd

a4 = 2(g_ -- ga) + g_, + g_

Pluming these into the cubic polynomial forfand rearranging,

,_=_- 3_-_+2¢)+_3_ - 2¢)

This is the form of the equation used to compute g,,t.

Remarks

1. At interior points in the array g, the derivatives g' and g'd are computed using a second-order central
difference formula. At the end points, second-order one-sided difference formulas are used.

2. The Fortran variable TINT is actually a one-dimensional array containing N_ or N 2 input values of
t,,,. Similarly, GINT is a one-dimensional array containing N2 or N: output values orgy,,.

3. The Fortran array G that specifies the input values ofg(t) is actually a two-dimensional array. Within
CUBIC, however, only one of the subscripts varies. The input flag IDIR specifies which one.

178 PROTEUS 2-D Subprograms: CUBIC PROTEUS Programmer's Reference

Subroutine EQSTAT (ICALL)

Called by Calls Purpose

BVUP Use equation of state to compute pressure, temperature, and their de-
EXEC rivatives with respect to the dependent variables.
INITC
MAIN

CP, CV

HSTAG

IBASE, ISTEP

ICALL

ItlSTAG

NPTS

N1, N2

RGAS

RtlO, U, V, W, ET

Specific heats cp and q.

Stagnation enthalpy kz used with constant stagnation enthalpy
option.

Base index and multiplication factor used in computing one-
dimension:d index for two-dimensional array.

0 to get p and 7", 1 to get derivatives of p and T with respect to
dependent variables.

Flag for constant stagnation enthalpy option.

Number of grid points in the sweep direction, N.

Number of grid points N_ and A"2,in the { and _/directions.

Gas constant R.

Static density p, velocities u, v, and w, and total energy E r.

o._mp_m

DPDRHO, DPDRU, DPDRV,
DPDRW, DPDET

DTDRHO, DTDRU, DTDRV,
DTDRW, DTDET

ET

INEG

P,T

Derivatives (?plOp, OplS(pu), @lO(pv), OplS(pw), and 8plOE r.

Derivatives OT/@p, 8T/8(pu), OT]O(pv), OT/O(pw), and 8T/OEr.

Total energy (constant stagmation enthalpy option only.)

Flag for non-positive pressure and/or temperature; 0 if positive, 1
if non-positive.

Static pressure p and temperature T.

Description

Subroutine EQSTAT computes various quantities that depend on the form of the equation of state. It
actually serves a dual purpose. First, it is called from subroutine INITC and from the MAIN program,
with the input parameter ICALL = 0, to compute the static pressure p and temperature T from the initial
or just-computed values of the dependent variables. If the constant stagnation enthalpy option is being used
it also computes a value for the total energy Er. And second, it is called from subroutines BVUP and
EXEC, with ICALL = 1, to compute the derivatives ofp and T with respect to the dependent variables. 24

The equation of state currently built into PROTEUS is for a perfect gas. The formulas used to compute
p, T, and their derivatives with respect to the dependent variables are presented in Section 5.3 of Volume
1 for two-dimensional planar flow and in Section B.2.3 of Volume 1 for a,,dsymmctric flow.

24 These are needed for linearization of the governing equations. See Section 5.t of Volume 1 for details.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: EQSTAT 179

Remarks

1. When used to compute p and T (ICALL = 0), this subroutine is called from outside any loops in the
or g directions. When used to compute Op/Op, etc., (ICALL = 1), it is called for each ADI sweep

from inside a loop in the non-sweep direction.

2. When computing 8p/Op, etc., this subroutine uses one-dimensional addressing of two-dimensional ar-
rays, as described in Section 2.3.

180 PROTEUS 2-D Subprograms: EQSTAT PROTEUS Programmer's Reference

Subroutine EXEC

Called by Calls Purpose

MAIN Manage solution of governing equations.ADI
AVISC 1
AVISC2
BCEI,IM
BCGEN
BVUP
COEFC
COEFE
COEFX
COEFY
COEFZ

EQSTAT
PERIOD
RESID
UPDATE

* A I PI IA 1, ix.I,PI IA2

DXI, DETA

ETAX, ETAY, ETAT

* IAV2E, IAV4E, IAV2I

* IAXI

IBCEI.M

* ICIIECK

* II tS'I'A(}

* ISWIRI,

IT

ITBP;G

* ITtlIN

Jl

KBCPF, R

NEQP

NMAXP

NPTI, NPT2

* N1, N2

Spatial difference centering parameters _ and a2, for the _ and _1
directions.

Computational grid spacing A_ and A_/.

Metric coefficients _/,, _/y(or _/, if axisymmetric), and _h.

Flags for second-order explicit, fourth-order explicit, and second-
order implicit artificial viscosity.

Flag for axisymmetric flow.

Flags for elimination of off-diagonal coefficient submalrices re-
sulting from three-point boundary conditions in the _ and _1 di-
rections at either boundary; 0 if elimination is not nccessary, 1 if
it is.

Convergence checking interval.

Flag for constant stagnation enthalpy option.

Flag for swirl in axisymmetric flow.

Current time step number n.

The time level n at the beginning of a run.

Flags for thin-layer option.

Inverse Jacobian of the nonorthogonal grid transformation, J

Flags for spatially periodic boundary conditions in the _ and _/
directions; 0 for non-periodic, 1 for periodic.

Cray PARAMETER specifying maximum number of coupled
equations allowed.

Cray PARAMETER specifying maximum of N1P and N2P.

N_ and A_ for non-periodic boundary conditions, ._,'_+1 and
N2 + 1 for spatially periodic boundary conditions in _ and v/.

Number of grid points NI and A_, in the _ and q directions.

PROTEUS 2-1) Programmer's Reference PROTEUS Subprograms: EXEC 181

NIP

XIX, XIY, XIT
Y

ALPHA
DEL

IBASE,ISTEP

ISWEEP

IV

I1, I2
JI

METX,METY,METT

NPTS
NV

RAX

RHO,U, V, W,ET

RHOL,UL, VL, WL,ETL

TL

Description

Cray PARAMETER specifying the DIMENSION size in the
direction.

Metric coefficients _x, _y (or _r if axisymmetric), and _,.

Radial coordinate r for a_symmetric flow.

Spatial difference centering parameter _ for the sweep direction.

Computational grid spacing in sweep direction.

Base index and multiplication factor used in computing one-

dimensional index for two-dimensional array.

Current ADI sweep number.

lndex in the "vectorized" direction, i,.

Grid indices i and j, in the _ and _t directions.

The radius times the inverse Jacobian of the nonorthogonal wid
transformation, rJ -_ (used in COEF routines for axisymmetric

flow only.)

Derivatives of sweep direction computational coordinate with re-

spect to x, y (or r if axisymmetric), and t.

Number of grid points in the sweep direction, N.

Number of grid points in the "vectorized" direction, N_.

1 for two-dimensional planar flow, and the local radius r for

a_symmetric flow.

Static density p, velocities u, v, and w, and total energy E T at time
level n + 1.

Static density p, velocities u, v, and w, and total energy Er at time
level n.

Static temperature T at time level n.

Subroutine EXEC manages the solution of the governing equations. It is called by the SLAIN program

during each marching step from time level n to n + 1. The steps involved in EXEC are described below.

Preliminary Steps

1. If this is the first time step, temporarily set the thin-layer flags to zero.

2. Initialize the coefficient submatrices A, B, and C, and the source term subvector S, to zero.

3. If spatially periodic boundary conditions are being used in either direction, call PERIOD to add the

appropriate extra line(s) of data.

182 PROTEUS 2-D Subprograms: EXEC PROTEUS Programmer's Reference

f'irst A DI .nceep, _ direction

4. Set various sweep-dependent parameters, as follows:

ISHEEP = 1
ISTEP = 1

DEL = A_

ALPHA = _l
NPTS = N_ or :V_+ 1
NV = N 2 or A2 + i

5. For axisynarnetric flow, set JI = rlJ at all grid points.

6. Begin loop in non-sweep (rl) direction over interior points (j = 12 = 2 to NPT2 - 1).

7. Set metrics in sweep (_) direction along the current _/-line (/"= 12) at all _ grid points (i = I1 = 1 to
NPT1), as follows:

METX(I2,I1) = (#,),,j
METY(I2,I1) = (_y),,or(cr),,_
METT(IZ,I1) = (¢,),,,

8. For axisymmctric flow, sct RAX(I1) = r,.j along the current _/-line at all _ grid points.

9. Call EQSTAT to get the derivatives ofp and T with respect to p, pu, etc., along the current _1-1ine
at all _ grid points.

10. Call the COEF routines to compute the coefficients and source terms for the governing equations
along the current _/-line at all interior _ g,Tid points.

11. End of loop in non-sweep 0/) direction.

12. For axisynunetric flow, reset JI = l/J at all grid points.

13. For non-spatially periodic boundary conditions in the ¢ direction, begin loop in non-sweep (_) direction
over interior points (j = 12 = 2 to NH'2 - l).

14. Call EQSTAT to get the derivatives ofp and 7' with respect to p, pu, etc., along the current _/-line
at all _ grid points.

15. Call BCGEN to compute the coefficients and source terms for the boundary condition equations
at the end points (i = I I = 1 and NO of the current _/-line.

16. If three-point boundary conditions were used at either boundary, call BCELIM to eliminate the
resulting off-diagonal coefficient submatrices.

17. End of loop in non-sweep (_/) direction.

18. Every ICIIECK time steps, call RESID to compute residuals at time level n without the artificial
viscosity terms, and to update the convergence history file.

19. If artificial viscosity is being used, call AVISCI or AVISC2 to add the appropriate terms to the coeffi-
cient submatrices and/or the source term subvectors at ,all interior grid points.

20. Every ICtIECK time steps, if _rtificial viscosity is being used, call RESID to compute residuals at time
level n with the artificial viscosity terms, and to update the convergence histors File.

21. If spatially periodic boundary conditions are being used in the _ direction, reset NPTS = N_.

22. Call ADI to solve the system of difference equations.

23. Begin loop in non-sweep (q) direction over interior points (]"= I2 = 2 to NPT2 - 1).

24. Call UPDATE to compute the primitive flow variables, Q', from the newly computed conservation

variables in delta form, AfQ', along the current _l-line at all _ gwid points.

25. End of loop in non-sweep (_/) direction.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: EXEC 183

Second ADI sweep, q direction

26. Set various sweep-dependent parameters, as follows:

ISL4EEP = 2
ISTEP = NIP

DEL = An

ALPHA = a2

NPTS = A_ or .V2+ I
NV = N_orN_+l

27. For a:dsymmetric flow, set JI = r/J at all grid points.

28. Begin loop in non-sweep (_) direction over interior points (i = II = 2 to NPT1 - 1).

29. Set metrics in sweep (_t) direction along the current _-line (i = II) at all _t grid points (j = I2 = 1 to
NPT2), as follows:

METX(II.12) = (r;,),,j
METY(I1. I2) = (_y),,jor(,_,),,,
METT(II.I2) = (q.),j

30. For axisymmetric flow, set RAX(I2) = r,.j along the current _-line at all _t grid points.

31. Call EQSTAT to get the derivatives ofp and T with respect to p, pu, etc., along the current G-line
at all _/grid points.

32. Call the COEF routines to compute the coefficients and source terms for the governing equations
along the current C-line at all interior _I grid points.

33. End of loop in non-sweep (_) direction.

34. For axisymmetric fow, reset JI = 1/J at all grid points.

35. For non-spatially periodic boundary conditions in the _ direction, begin loop in non-sweep (_) direction
over interior points (i = I1 = 2 to NIrI'l - 1).

36. Call EQSTAT to get the derivatives ofp and T with respect to p, pu, etc., along the current _-line
at all _/grid points.

37. Call BCGEN to compute the coefficients and source terms for the boundary condition equations
at the end points (j = I2 = 1 and N:) of the current _-line.

38. If three-point boundary conditions were used at either boundary, call BCELIM to eliminate the
resulting off-diagonal coefficient submatrices.

39. End of loop in non-sweep (_) direction.

40. If implicit artificial viscosity is being used, call AVISC1 to add the appropriate terms to the coefficient
submatrices at all interior grid points.

41. If spatially periodic boundary conditions are being used in the _t direction, reset NPTS = N:.

42. Call AI)I to solve the system of difference equations.

43. Begin loop in non-sweep (C) direction over interior points (i = I1 = 2 to NPTI - I).

44. Call UPDATE to compute the primitive flow variables, Q_+_, from the newly computed conserva-
^

lion variables in delta form, AQ _, along the current _-line at all _ grid points.

45. End of loop in non-sweep (_) direction.

Finishing Steps

46. If this is the first time step, reset the thin-layer flags back to their input value.

184 PRO'I_EUS 2-D Subprograms: EXEC PROTEUS Programmer's Reference

47. Call BVUP to update the _ boundary values, if necessary.

48. For all grid points, shift RHO and RHOL so that RHO = p"*_ and RHOL = p". Similarly, shift the
Fortran variables for u, v, w, and Er. Finally, set TL = T".

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: EXEC 185

Subroutine FILTER

Called by Calls Purpose

BIK3 BI KOUT Rearrange rows of the boundary condition coefficient submatrices and
BIK4 ISAMAX the source term subvector to eliminate any zeroes on the diagonal.
BI,K5

A,B,C

* 11)I'."B U(}

* IPRFIA, IPRT2A

ISWF.EP

IT

IV

NEQ

NMAXP

* NOUT

NPRTI, NPRT2

N PTS

S

A,B,C

S

Description

Coefficient submatrices A, B, and C before rearrangement.

Debug flags.

Indices for printout in the { and _/directions.

Current ADI sweep number.

Current time step number n.

Index in the "vectorized" direction, iv.

Number of coupled equations being solved, N,q.

Cray PARAMETER specifying maximum of NIP and N2P.

Unit number for standard output.

Total number of indices for printout in the _ and _/directions.

Number of grid points in the sweep direction, N.

Source term subvector S before rearrangement.

Coefficient submatrices A, B, and C after rearrangement.

Source term subvector S after rearrangement.

Subroutine FII:I'ER rearranges rows of the coefficient block submatriccs and the source term subvcctor,

at the two boundaries in the ADI sweep direction, in an attempt to eliminate any zero values on the diag-
onal of the submatrix B. These zero values may occur when boundary conditions are specified using the

JBC and:or IBC input parameters, depending on the initial conditions and the order of the boundary con-
ditions.

For instance, if the specified initial conditions are zero velocity and constant flow properties everywhere
in the flow field, the perfect gas equation of state yields:

E T = pCvT

p = (_, - 1)E r

Op Op Op

0-7-= O(pu) - o(pO = o

Op
OE r y 1

186 PROTEUS 2-D Subprograms: FILTER PROTEUS Programmer's Reference

OT ET

Op cvP 2

cOT OT

O(pu) aOv)

OT 1

OE T cvP

If, in addition, the boundary conditions at a given boundary are, in order, specified pressure p =f no-slip
x- and and y-velocity u = 0 and v = 0, and specified temperature T=f then the linearization of the
boundary conditions leads to the following B coefficient submatrix for that boundary:

0 0 0B = 0 J/p 0
0 0 Jlp

-JElT/q,p 2 0 0 J/cvp j

The zero on the diagonal will lead to a divide-by-zero error in subroutine BIK4, even though this is not a
singular matrix.

Subroutine FILTER tries to fix this problem. In this example, it finds a zero at element B u, searches
column 1 for the largest element in absolute value (in this case --JEr/c_p2), and adds that row to the row
with the zero on the diagonal. Of course, the corresponding rows of A, C, and S must also be added to-
gether. The new B submatrix would be:

[-JET]cvp20 j/pO O0 J(y-l!+J/cvp]B = 0 2 0 J]p

-JET/Cvp 0 0 J/cvp J

Remarks

1. If a column with a zero on the diagonal has no other elements greater than 10 -1°, then it is assumed that
the matrix B is singular, which means the specified boundary conditions are not independent of one
another. An error message is printed and the calculation is stopped.

2. It's probably sufficient to only call this subroutine for the first time step. After the first step, the chances
of u and v both being exactly zero at the same interior grid point are slim. Nevertheless, in the current
version of PROTEUS, FILTER is called at every time step.

3. The Cray BLAS routine ISAMAX is used in finding the largest element in any column corresponding
to a zero on the matrix diagonal.

4. This subroutine generates the output for the IDEBUG(4) option.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: FILTER 187

SubroutineFTEMP

Calledby Calls Purpose
INITC Computeauxiliaryvariablesthatarefunctionsof temperature.
MAIN

CCPI, CCP2, CCP3, CCP4

CK1, CK2

CMU1, CMU2

* GAMR

IGAM

* ILAMV

* NOUT

* NI, N2

RGAS

T

* TR, UR, MUR, KTR

Output

CP, CV

M U, LA, KT

Description

Constants in formula for specific heat.

Constants in formula for laminar thermal conductivity coefficient.

Constants in formula for laminar viscosity coefficient.

Reference ratio of specific heats, y,.

Flag for constant or variable % c0, and y; 0 if they are to be
computed as functions of temperature, 1 if they are to be treated
as constant.

Flag for computation of laminar viscosity and thermal
conductMty.

Unit number for standard output.

Number of grid points N l and _\½, in the _ and _ directions.

Gas constant R.

Static temperature T.

Reference temperature T,, velocity u,, viscosity V,, and thermal
conductivity k,.

Specific heats G and c,.

Laminar coefficient of viscosity _t, laminar second coefficient of

viscosity zl_, and laminar coefficient of thermal conductivity kz.

Subroutine FTEMP computes the auxiliary variables #_, 3ol,kz, G, and q. For the laminar viscosities ttz
and J-t, and the laminar thermal conductivity kz, there are two options currently available.

If the input parameter ILAMV = 0 (the default), FTEMP sets the nondimensional values as:

ktl = t

'_l = --2/3

kl= 1

Thus, with this option, the laminar viscosity and thermal conductivity are held constant at their reference
values. These reference values, may be specified by the user, or computed from the reference temperature.
The laminar second coefficient of viscosity).z is set equal to - 2/zd3.

If ILAMV = 1,/_ and k_ are computed as functions of temperature using Sutherland's formula (White,

1974). The formula for the laminar viscosity coefficient _tz is

188 PROTEUS 2-D Subprograms: FTE.MP PROTEUS Programmer's Reference

"'r + G2 (T) 3:2,, "" :="+ G2

where the overbar indicates a dimensional value, and/_', is the laminar viscosity coctlicicnt at T = T. gi'ven

by

Depending on the nm'nelist input values of MUR and RFR, /_', may or may not be equal to _z,. These

formulas are valid for air for temperatures from 300 to 3420 °R (167 to 1900 K). The value of the constants

C,_ and Q2 depend on whether reference values are being specified by the user in English units
(IUNII'S = 0) or SI units (IUNITS = 1). The values are presented in Table 4-1. The laminar second co-

efficient of viscosity)._ is set equal to - 2/,j3. The formula for the laminar thermal conductivity coefficient

k; is

: k. ?"_+Ck2 (}=)3/2/";- k:- k_ 7_+Ck2 -::7

where the overbar indicates a dimensional v_due, and k', is the laminar thermal conductivity coefficient at

7" = 7",, given by

T3/2

k; = Ckl 7"+ Ok2

Depending on the namelist input values of KTR and PRIR, k', may or may not be cqual to k,. These

formulas are valid for air for temperatures from 300 to 1800 °R (167 to 1000 K). The value of the constants

C,l and C_2 depend on whether reference values are bcing specified by the user in F_nglish units

(IUNI'fS = 0) or SI units (IUNITS = 1). The values are presented in Table 4-1.

There are also two options available fi)r the spccific heat coefficients % and % If the flag IGAM = 1, a
value of the specific heat ratio y has been specitied by the uscr. In this case G and c_ are treated as constants,

and computed t_om

R
Cvn

?,--1

Cp=q, t R

If IGAM = 0, the user did not specify a value of y. In this case, the specific heat coefficient c: is computed

as a function of temperature from the empirical formula of tlesse and Mumford (1964), and c_ is computed

from that value assuming a thermally perfect gas. The ratio y = G/G will then vary with temperature. The

equations for c: and c_ are:

7"_ 7;

Hr H r

c_=cp- R

This formula is valid for air for temperatures from 540 to 9000 °R (300 to 5000 K). The values of the

constants C_pl through C_: are presented in Table 4-1.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: FTEMP 189

TABLE4-1.- EMPIRICALCONSTANTSFOR_z,kz, AND cp

CONSTANT

CI

G,
G2

%,
C_p_

Cop3

C_p4

ENGLIStt

UNITS

7.3035 x 10-"

198.6

7.4907 x 10 .3

350.0

8.53 x 103

3.12 x 10a

2.065 x 106

7.83 x 108

SI UNITS

1.4582 x 10-6

110.3

1.8641 x 10 -3

194.4

1.4264 x 103

3.8888 x lOs

1.9184 x lOs

4.0413 x 107

Remarks

1. The formulas used with the ILAMV = 1 option are for air. For other fluids, different formulas should
be used to compute tzl, 2 l, and k_. These could easily be programmed as additional ILAMV options.
Or, if the flow being computed is such that #/ and k_ may be considered constant, simply set
ILAMV = 0 and read in the appropriate values for/z, and k,. Note, however, that the ILAMV = 0
option still sets 2_ = -2/_/3.

2. The formula used to compute cp, when a value of y is not specified by the user, is for air. For other
gases, a different formula should be programmed. Or, if G and c_ may be considered constant, a value
of y should be read in.

3. An error message is generated and execution is stopped if an illegal value is specified for ILAMV.

190 PROTEUS 2-D Subprograms: FTEMP PROTEUS Programmer's Reference

Subroutine GEOM

Called by Calls Purpose

MAIN METS Manage computation of grid and metric parameters.
PAK

* IPACK

* NGEOM

* NGRID

* NOUT

* N1, N2

NIP, N2P

* RMIN, RMAX

* TtlMIN, THMAX

* XMIN, XMAX

* YMIN, YMAX

Flags for grid packing option.

Flag for type of computational coordinates.

Unit number for input mesh fde.

Unit number for standard output.

Number of grid points N 1 and N2, in the _ and rt directions.

Cray PARAMETERs specifying the DIMENSION sizes in the

and rt directions.

Minimum and maximum d-coordinates for polar grid.

Minimum and maximum 0'-coordinates for polar grid.

Minimum and maximum x-coordinates for Cartesian _p'id.

Minimum and maximum y-coordinates for Cartesian grid.

DXI, DETA

X,Y

Computational grid spacing A_ and Art.

Cartesian coordinates x and y, or cylindrical coordinates x and r.

Description

Subroutine GEOM manages the computation of the grid and metric parameters.
three coordinate system options built into PROTEUS, as follows:

NGEOM Computational Coordinates

There are currently

1 Cartesian (x-y)
2 Polar (r'-0')
10 Read from separate fde.

Subroutine GEOM first computes the grid spacing in computational space in the _ and rt directions as
A_ = l/(Nt- 1) and Art = II(N2- 1). Note that grid points in computational space are always evenly dis-
tributed along the (_-rt) coordinate lines.

Cartesian (x-F) Coordinates (NGEOM = 1)

For the Cartesian coordinate option, an evenly spaced set of physical Cartesian (x-y) coordinates are

related to the computational (_-_/) coordinates by

X = Xmi n + (Xma x -- Xmin)_

Y = Ymin + (-Fmax -- Ymin)rt

These equations also apply to axisymmetric flow, with y representing the radius r. If grid packing is used,
subroutine PAK is called to redistribute these points according to the packing parameters specified by the

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: GEOM 191

user, and to interpolate to get the new physical Cartesian (x-y) coordinates in the computational mesh.
Subroutine METS is then called to numerically compute the grid transformation metrics and Jacobian.

Polar (r'-O') Coordinates (NGEOM = 2)

For the polar coordinate option, an evenly spaced set of physical polar (r'-0') coordinates are related to
the computational (_-q) coordinates by

0 I a

O" = Omi n + (Oma x -- Ornin)_

r = r',._. + (r,_a_ - r',.e.)'I

The Cartesian (x-y) coordinates are simply given by

X = r' cos O"

y = r' sin0'

The above equations also could be used in axisymmetric flow, with y representing the radius r. As in the
NGEOM = 1 option, if grid packing is used, subroutine PAK is called to redistribute these points according
to the packing parameters specified by the user, and to interpolate to get the new physical Cartesian (x-y)
coordinates in the computational mesh. Subroutine METS is then called to numerically compute the grid
transformation metrics and Jacobian.

Coordinates Read From Separate File (NGEOM = 10)

The third option for specifying the computational coordinate system is to read it from a separate fde,
as described in Section 3.2 of Volume 2. The computational (_-_) coordinate system is determined by a
set of No, x _"_2 points whose physical Cartesian (x-y) coordinates are specified. Here Net, and N_2 are the
number of points in the _ and r/directions used to specify the computational coordinate system. Note that
they do not have to be equal to Nl and A_, the number of points in the computational mesh used for the
finite-difference methodY Note also that the points do not have to be equally distributed in physical space
along the _ and r/coordinate lines.

If grid packing is being used, subroutine PAK is called to distribute Njx N 2 computational mesh points
in physical space according to the packing parameters SQ specified by the user, and to interpolate among
the Net x No,2 points in the input computational coordinate system to get the new physical Cartesian coor-
dinates of the points in the computational mesh.

If grid packing is not being used, but N_j and No2 are not equal to N_ and A½ respectively, then sub-
routine PAK is still called. In this case, however, PAK distributes the N, x N 2 computational mesh points
evenly in physical space and then interpolates among the Na_ x N_: points ha the input computational co-
ordinate system to get the new physical Cartesian coordinates of the points in the computational mesh.

In either case, subroutine METS is then called to numerically compute the grid transformation metrics
and Jacobian.

Remarks

There may be some confusion between the axisymmetric flow option and the polar coordinate system
option, or between the axisymmetric radius r and the polar coordinate r'. They are not the same thing.
The governing flow equations were originally developed by writing them in Cartesian (x-y) coordinates,
then transforming them into generalized (_-_/) coordinates. Therefore, any computational coordinate
system that is used, including the polar coordinate system, must be related to the original Cartesian
system through the transformation metrics and Jacobian. The parameters r' and 0' are used only to
initially define the coordinates in the NGEOM = 2 option. Now, if the (x-y) coordinates, no matter
how they are obtained, are rotated about the Cartesian x axis, the result is a cylindrical coordinate co-

25 The distinction between the computational coordinate system and the computational mesh is described in Section
2.2 of Volume 2.

192 PROTEUS 2-D Subprograms: GEOM PROTEUS Programmer's Reference

.

3.

ordinate system with y representing the radius r. Thus, the axisymmetric flow option can be used with
any of the coordinate system options. The polar coordinate option would be useful, for instance, for
flow over a sphere.

An error message is generated and execution is stopped if an illegal coordinate system option is speci-
fied.

With the NGEOM = 10 option, an error message is generated and execution is stopped if N_t and/or
N_2 are greater than the dimensions N 1P and/or N2P.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: GEOM 193

Subroutine INIT

Called by Calls

1NITC

Purpose

Get user-defmed initial flow field.

* ICVARS

NIN

* NOUT

* NI, N2

Output

Flag specifying which variables are being supplied as initial con-
ditions by subroutine INIT.

Unit number for namelist input.

Unit number for standard output.

Number of grid points N_ and N2, in the _ and q directions.

P, T, U,V, W Initial flow field values of static pressure p, static temperature T,
and velocities u, v, and w.

Description

Subroutine INIT supplies the user-defined initial flow field. In general, this subroutine will be tailored
to the problem being solved, and supplied by the user. Details on the variables to be supplied by INIT are
presented in Section 5.1 of Volume 2.

A default version of INIT is supplied with PROTEUS that specifies uniform flow with constant prop-
erties everywhere in the flow field. The above list of input and output Fortran variables are for the default
version of INIT. The default version assumes ICVARS = 2 (the default value), and reads values of p0, u0,
v0, w0, and T o from namelist IC. The defaults for these parameters are 1.0, 0.0, 0.0, 0.0, and 1.0, respectively,
resulting in an initial flow field with _ = p,, u = v = w = 0, and T = 7",.

Remarks

.

2.

If a value for ICVARS other than 2 is set in the input, a warning message is generated and ICVARS
is reset to 2.

Subroutine INIT is a convenient place to specify point-by-point boundary condition types and values.
It's often easier to do this using Fortran coding rather than entering each value into the namelist input
file.

194 PROTEUS 2-D Subprograms: INIT PROTEUS Programmer's Reference

Subroutine INITC

Called by Calls Purpose

MAIN Set up consistent initial conditions based on data from INIT.EQSTAT
FTEMP
INIT
REST
TURBBL

l.oot

* GAMR

GC

* ttSTAG

* ICVARS

* IHSTAG

* IREST

* ITURB

* N1, N2

PR

RGAS

* RHOR, UR

INITIAL FLOW FIELD

Output

RIIO, U, V, W, ET

RHOL, UL, VL, WL, ETL

TL

Description

Reference ratio of specific heats, y,.

Proportionality factor gc in Newton's second law.

Stagnation enthalpy h r used with constant stagnation enthalpy
option.

Flag specifying which variables are being supplied as initial con-
ditions by subroutine INIT.

Flag for constant stagnation enthalpy option.

Flag for reading restart file.

Flag for turbulent flow option.

Number of grid points N 1 and N2, in the _ and rt directions.

Reference pressure p,.

Gas constant R.

Reference density p, and velocity u,.

From the user-suppled or default version of subroutine INIT.
The combination of variables supplied by INIT is specified by
ICVARS. See Section 5.0 of Volume 2 for details.

Initial flow field values of static density p, velocities u, v, and w,
and total energy E r at time level n.

Initial flow field values of static density p, velocities u, v, and w,
and total energy Er at time level n - 1.

Static temperature T at time level n - 1.

Subroutine INITC sets up consistent initial flow field conditions based on the data supplied by sub-
routine INIT. For restart cases, subroutine REST is called to read the computational mesh and the initial
flow field. Otherwise, the data supplied by INIT are used to obtain the density p, the velocities u, v, and
w, and the temperature T. _ It then calls FTEMP to compute the laminar viscosity coefficients tar and 2_, the
laminar thermal conductivity coeffÉcient k_, and the specific heat coefficients cp and c,. EQSTAT is called
next to compute the pressure p and to recompute the temperature T3' For turbulent flow, the appropriate

26 The calculation of T at this point may be approximate. See Remark 1.

2_ See Remark 1.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: INITC 195

subroutinesarecalledto compute the effective viscosity and thermal conductivity coefficients using the
turbulence model specified by the user. And finally, for non-restart cases, the values of the dependent var-
iables at time level n- 1 are set equal to the values at level 1.

The flag ICVARS is used to specify which combination of variables are being supplied by INIT. The
calculation of p, u, v, w, and T is described below for the different values of ICVARS_ In all of the equations
below, the specific heats are defined by

R

cv Yr - 1

cp= R + cv

where e, is either specified by the user or computed from the reference temperature 7",.

ICVARS = 1

With this option, the density p, the momentum components pu, pv, and pw, and if ItlSTAG = 0 the
total cnergy E r, are supplied by INIT. Thus, the velocity components are simply

pu
1,g_ m

p

pv
V_ D

p

pw
W =-

P

If the energy equation is being solved (IItSTAG = 0), the temperature is computed from

1 (u 2+v 2+w2)]2

If the energy equation is being eliminated by assuming constant stagnation enthalpy (IIISTAG = 1), the
temperature is computed from

1 1 (u 2 + v2 + w2)]v = [hr- T

ICVARS = 2

With this option, the pressure p and the velocities u, v, and w are supplied by INIT. If the energy
equation is being solved (IHSTAG = 0), the temperature T is also supplied by INIT. If it is being elimi-
nated by assuming constant stagnation enthalpy (ItlSTAG = 1), the temperature is computed from

1 [1 (u2+v2]T=--_p hT--- _ +w 2)

The density is then given by

and the total energy is

1 2 v2 w2)]Er=p[cvT+T(u + +

196 PROTEUS 2-D Subprograms: INITC PROTEUS Programmer's Reference

1C_StRS = 3

With this option, the density p and the velocities u, v, and w are supplied by INIT. If the energy
equation is being solved (IttSTAG = 0), the temperature T is also supplied by INIT. If it is being elimi-
nated by assuming constant stagnation enthalpy (IHSTAG = 1), the temperature is computed from

T- 1 w2)]- cp [hT-- 1 2 v 2T(_ + +

The total energy, is then

I 1 (u 2 + v2 1ET= P cvT + T + w2)

IC{'\4RS = 4

With this option, the pressure p and the velocities u, v, and w are supplied by INIT. If the energy
equation is being solved (IHSTAG = 0), the density p is also supplied by INIT. If it is being eliminated
by assuming constant stagnation enthalpy (IHSTAG = 1), this option is the same as the ICVARS = 2 op-
tion. If the energy, equation is being solved, then, the temperature is

T= P_£_
pR

The total energy' is then

1 (u2+v 2 w2)]Er = P [cvT + T +

ICVARS = 5

With tiffs option, the static pressure coefficient cp and the velocities u, v, and w are supplied by INIT.
If the energy' equation is being solved (ItlSTAG = 0), the temperature T is also supplied by INIT. If it is
being eliminated by assuming constant stagnation enthalpy (IIISTAG = 1), the temperature is computed
from

l [1 (u2+v2]T=-_--p hr- T +w 2)

The pressure coefficient is defined by

(15 - Pr)gc

Cp = ;rU_12

The nondimensionalized pressure p = figc/p,u] is thus

Prgc
P=T + 2

Pr_

or, since p, = p,RT,/g c and the nondimensionalized gas constant R = RT,/u2,,

ep
p=T+R

The density, is then

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: INITC 197

and the total energy is

1 2 w2)]E T=plcvT+-_(u +v 2+

ICVARS = 6

With this option, the pressure p, Mach number .14, and flow angles _, and % are supplied by INIT. If
the energy equation is being solved (IttSTAG = 0), the temperature T is also supplied by INIT. If it is
being eliminated by assuming constant stagnation enthalpy (IHSTAG = 1), the temperature is computed
from

Yr- 1 2) -1T= T T 1 +-_M

where Tr = hr/cp. The density is

The flow angles are defined by at = tan-t(v/u) and % = tan-l(w/u). The Mach number is def'med by

M = + + l/2
yrRT

Solving for u,

u = M I VrRT 11/21 + (v/u) 2 + (w/u) 2

where (v/u) 2 = tan2c_, and (w/u) _= tan2%. The remaining velocities are simply

V = lg tall ocv

w = u tan aw

The total energy is

ET= plcvT 1 2 v 2]+T(u + +w 2)

Remarks

1. If T is not supplied by INIT, it must be computed from the equation of state. The equation of state

contains a specific heat coefficient (either cp or % depending on whether the stagnation enthalpy is as-
sumed constant or not.) The first time T is computed in INITC, a constant value of specific heat is
used, consistent with the reference temperature 7",. If the user specified constant specific heat (i.e., a
value for _'r was read in), this is not a problem, ltowever, if the temperature-dependent specific heat
option is being used (i.e., a value for)'r was not read in), the equation of state and the empirical equation
for specific heat are coupled. For this reason T is recomputed in EQSTAT after the specific heats are
computed in FTEMP. Ideally, this coupling would be handled by iteration between FTEMP and
EQSTAT. This is not currently done in PROTEUS, however.

2. For options in which the pressure p is specified (ICVARS = 2, 4, and 6), the value supplied by INIT
is rcdefmcd as follows:

Prgc
P=P 2

P rUr

198 PROTEUS 2-D Subprograms: INITC PROTEUS Programmer's Reference

This isnecessary because input and output values ofp are nondirnensionalized by the reference pressure
p, = p,RT,, while internal to the code itself p is nondimensionalized by the normalizing pressure
p, = p,uT. See Section 3.1.1 of Volume 2 for a discussion of the distinction between reference and nor-
malizing conditions.

3. With the ICVARS = 6 option, the initial velocity u will be limited to non-negative values.

4. If non-positive pressures or temperatures were computed in EQSTAT, the Fortran variable INEG will
be positive. An error message will be printed, including a table showing the location of the non-positive
values. The calculation will stop in INITC.

5. An error message is generated and execution is stopped if an illegal value is specified for ICVARS.

6. An error message is generated and execution is stopped if the value of ITURB does not correspond to
an existing turbulence model.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: INITC 199

Subroutine 1N PUT

Called by

MAIN

Calls Purpose

ISAMAX Read and print input, pcrform various initial_ations.

NIN

NTP

NTSEQP

NIP, N2P

GAMR

I ISTAG, IISTAGR

1GAM

* IPRTIA, 1PRT2A

ITDBC

MACIIR

MUR, KTR

NI Q
NPRTI, NPRT2

NRW, NET

NZM, NL:N

Unit number for namelist input.

Cray PARAMETER specifying the maximum number of entries
in the table of time-dependent boundary" condition values.

Cray PARAMETER specifying the maximum number of time
step sequences for the time step sequencing option.

Cray PARAMETERs specifying the DIMENSION s_es in the
and r/directions.

PR

PRLR

RER, PRR

RGAS

UR

Description

Subroutine INPUT performs various input and initialization functions.
namelist input from the standard input file.

Reference ratio of specific heats, y,.

Dimensionless and dimensional stagnation enthalpy h r for the
constant stagnation enthalpy option.

Flag for constant or variable % c_, and y; 0 if they are to be
computed as functions of temperature, 1 ix_ they are to be treated
as constant.

Indices for printout Ln the { and _/directions.

Flag for time-dependent boundary' conditions; 0 if all boundary
conditions are steady, 1 if any general unsteady boundary condi-
tions are used, 2 if only steady and time-periodic boundary con-
ditions are used.

Reference Mach number M_.

Reference viscosity coefficient _, and thermal conductivity coeffi-

cient k,.

Number of coupled equations being solved, N,q.

Total number of indices for printout in the _ and _/directions.

Array indices associated with the dependent variables pw and Er.

Array indices associated with the swirl momentum and energy
equations.

Reference pressure p_.

Reference kmainar Prandtl number Pr_.

Reference Reynolds number Re_ and Prandtl number Pr,.

Gas constant R.

Reference velocity u,.

It first reads the title and

Namelist RS'I'RT is read first, followed by namelist IO. If

200 PROTEUS 2-D Subprograms: INPUT PROTEUS Programmer's Reference

IUNITS = 1, indicating reference conditions will be specified in SI units, various default values and con-
stants are redefmed to be consistent with SI units. The remaining namelists are then read.

Next, the flags controlling the time step cycling and the convergence testing method are redefined, if
necessary, to be consistent with each other. The number of equations being solved, and the array indices
corresponding to the energy and swirl momentum equations, are then determined based on the values of
IHSTAG and ISWIRL. A flag is set if time-dependent boundary" conditions are being used. If the thin-
layer option is being used, the flags ITXI and ITETA used in the Baldwin-Lomax turbulence model are
automatically set equal to values consistent with the thin-layer approximation.

Next, if frequency of printout in the _ and r/ directions is being set by the input arrays IPRT1 and
IPRT2, the corresponding grid indices are stored in arrays IPRT1A and IPRT2A. The total number of

printout locations in each direction is also determined.

A header is then written to the standard output file, followed by the input namelists. Note that, for

variables not specified by the user in the input namelists, the values in this printout will be the default val-
ues.

Various checks are made for inconsistent or invalid input, and appropriate error or warning messages
are written. These are described in Section 7.0 of Volume 2.

Next, any reference or normalizing conditions not already defined are calculated. The reference and
normalizing conditions are then written to the standard output fde, with the appropriate units. See Section
3.1.1 of Volume 2 for a discussion of the distinction between reference and normalizing conditions.

Remarks

1. The Cray BLAS routine ISAMAX is used in the input consistency check to determine whether any
implicit artificial viscosity coefficients are non-zero.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: INPUT 201

Function ISAMAX (N,V,INC)

Called by Calls Purpose

BLOUT1
BLOUT2
CONV
FILTER
INPUT
RESID
TIMSTP

Find the first index corresponding to the largest absolute value of the
elements of a Fortran vector.

N

V

INC

Number of elements to process in the vector (i.e.,
N = vector length if INC = 1, N = (vector length)/2 if INC = 2,
etc.).

Vector to be searched.

Skip distance between elements of V. For contiguous elements,
INC = 1.

First index corresponding to the largest absolute value of the ele-
ments of V that were searched.

Description

Function ISAMAX finds the first index corresponding to the largest absolute value of the elements of
a vector. For a one-dimensional vector, the use of ISAMAX is straightforward. For example,

IMAX = ISAMAX(NP,V,1)

sets IMAX equal to the index I corresponding to the maximum value of V(I) for I = 1 to NP.

A starting location can be specified, as in

IMAX = 4 + ISAMAX(NP - 4,V(5),1)

sets IMAX equal to the index I corresponding to the maximum value of V(I) for I = 5 to NP.

Multi-dimensional arrays can be used by taking advantage of the way Fortran arrays are stored in
memory, and specifying the proper vector length and skip distance. For instance, if A is an array dimen-
sioned NDIM1 by NDIM2, then

IMAX -- ISAMAX(NDIM I*NDIM2,A, 1)

sets IMAX equal to the one-dimensional index corresponding to the maximum value of A(I,J) for all I and
J. The maximum value of A can then be referenced as A(IMAX, I).

One dimension at a time can also be searched. For example,

IMAX -- ISAMAX(NDIM I,A(1,5), 1)

sets IMAX equal to the index I corresponding to the maximum value of A(I,5) for I varying from 1 to
NDIMI. Similarly, by specifying a skip increment,

202 PROTEUS 2-D Subprograms: ISAMAX PROTEUS Programmer's Reference

JMAX = ISAMAX(NDIM2,A(5,J),NDIM 1)

sets JMAX equal to the index J corresponding to the maximum value of A(5,J) for J varying from 1 to
ND1M2.

Remarks

1. ISAMAX is a Cray BLAS (Basic Linear Algebra Subprograms) routine (Cray Research, Inc., 1988b).

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: ISAMAX 203

Function ISAMIN (N,V,INC)

Called by Calls Purpose

B I.OUTI Find the first index corresponding to the smallest absolute value of the
BI.OUI'2 elements of a Fortran vector.

N Number of elements to process in the vector (i.e.,
N = vector length if INC = 1, N = (vector leng'th)/2 if INC = 2,
etc.).

V Vector to be searched.

INC Skip distance between elements of V. For contiguous elements,
INC = 1.

First index corresponding to the smallest absolute value of the el-
ements of V that were searched.

Description

Function ISAMIN finds the first index corresponding to the smallest absolute value of the elements of
a vector, it is used in exactly the same way' as ISAMAX.

Remarks

1. ISAMIN is a (.'ray extension to the BI:AS (13asic l.inear Algebra Subprograms) routines (Cray Re-
search, Inc., 1988b).

204 PROTEUS 2-D Subprograms: ISA.MIN PROTEUS Programmer's Reference

Program MAIN

Called by Calls Purpose

Manage overall solution.BCSET
CONV

EQSTAT
EXEC
FTEMP
GEOM
INITC
INPUT
OUTPUT
PLOT
PRTHST
REST
TBC
TIMSTP
TURBBL

None.

IT

ITEND

1TSEQ

TAU

Description

Current time step number n.

Final time step number.

Current time step sequence number.

Current time value T.

The MAIN program is used to manage the overall solution. The steps involved are described below.

Preliminary Steps

1. Call INPUT to read and print the input, and perform various initialization procedures.

2. Unlcss this is a restart case, call GEOM to get the computational coordinates and metric data.

3. Call INITC to get the initial flow field.

4. Call BCSET to set various boundary condition parameters and flags, and to print the input boundary
condition types and values.

5. Initialize the plot fde? s and, if requested by the user, write the initial or restart flow field into the plot
file.

6. If requested by the user, print the initial or restart flow field.

7. Compute NTSUM, the maximum total number of marching steps to be taken, and ITEND, the cor-
responding final index on the time marching loop. Set the initial values of ITSEQ, the time step se-
quence number, and ITSWCH, the time index for switching to the next sequence, both to zero.

28 The initialization procedure depends on the type of plot file being written. See the description of subroutine PLOT.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: MAIN 205

T#ne march# N/oo2

1(].

11.

12.

13.

14.

15.

16.

17.

1S.

19.

20.

21. l!nd

Bcgdn the time marching loop. The loop index IT corresponds to the known time level n. Each iter-
ation of the loop thus corresponds to a step from time level n to n + 1.

If at the end of a time step sequence, update ITSEQ, the time step sequence number, and
ITS\VCIt, the tflnc index for switching to the next sequence.

For the first time step, and every IDTMOD'th step thereafter, call TIMSTP to compute the new
time step At. For ever':," time step update the time value r.

If time-dependent boundary conditions are being used, call TBC to set the boundary condition
values.

(;all tiXl(C to solve the equations.

Call I iC)SI'AI' to compute the pressure p and temperature T from the equation of state. If either
is non-positive, indicating a non-physical solution, skip forward to step 17.

(;all I:TI!MP to compute the laminar viscosities u_ and _, the laminar thermal conductivity kt, and
the specific heats cp and c,.

I:or turbulent flow, call the appropriate subroutines to compute the effective viscosity and thermal
conductivity coefficients using the turbulence model specified by the user.

Every ICI II';CK time levels, call CONV to check for convergence.

If requested by the user, or if the calculation is converged, or if non-positive pressures or temper-
atures were computed, print the flow field at time level n + 1.

If requested by the user, or if the calculation is converged, or if non-positive pressures or temper-
atures were computed, write the flow field at time level n + 1 into the plot file.

If non-positive pressures or temperatures were computed, write an error message showing the lo-
cation of the non-positive w.dues and skip forward to step 23, ending the calculation.

If the calculation is converged, print a message and skip forward to step 22, ending the calculation.

of time marching loop. Print a message indicating the calculation did not converge.

t'Tnal Step.5

22. If requested by the uscr, call REST to write the restart fde.

23. It" first-order time diffcrencing and steady boundary conditions were used, call PRTHST to print the
ct)nvergence history.

Remarks

,

.

The starting index for the time marching loop is ITBEG. For a non-restart case ITBEG = 1, and thus
the initial starting flow field is at time level 1. For a restart case ITBEG = n, where n is the time level
stored in the restart file, and thus the starting flow field is the previously computed flow field at time
level n.

The ending index for the time marching loop is ITEND = ITBEG + NTSUM - 1, where NTSUM is
the total number of time steps to be taken. For a non-restart case, then, the time marches from level
1 to level 1+ NTSUM. For a restart case, the time marches from level 1TBEG to level
ilBl'i(i + NIS[;M.

Thc lo_c involving NTSUM, ITSEQ, and ITSWCH is used to implement the time step sequencing
option. This allows one CFL number or time increment to be used for a specified number of steps,
followed by another CFL number or time increment for another specified number of steps, etc39 If this
option is not used, NTSUM is simply equal to NTIME(I) and ITSEQ is always 1.

29 See Section 3.1.9 of Volume 2 for details on how to invoke the time step sequencing option.

206 PROTEUS 2-1) Subprograms: MAIN PROTEUS Programmer's Reference

4. An error message is generated and execution is stopped if the value of ITURB does not correspond to
an existing turbulence model.

5. Although the calculation will stop ifp or T< 0, as noted above in step 19, the standard output and plot
file will include the time level with the non-positive values, if that is consistent with the IPRT and IPLT

input parameters in namelist IO. The restart file will not be written.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: MAIN 207

SubroutineMETS

Calledby Calls Purpose
GEOM OUTPUT Computemetricsof nonorthogonalgridtransformation.
REST

* AIPtlA1, ALPItA2

I)XI, DETA
* iI)t-BUG
* IVOUT
* NI, N2

X,Y

Output

E'FAX, ETAY, ETAT

IVOUT

JI

X1X, X1Y, XIT

l)eseription

Spatial difference centering parameters _, and c_2, for the _ and
directions.

Computational grid spacing A_ and Aq.

Debug flags.

Flags specifying variables to be printed.

Number of grid points N2 and N2, in the ¢ and _I directions.

Cartesian coordinates x and y, or cylindrical coordinates x and r.

Metric coefficients _/,, q, (or _t, if axisymmetric), and _/,.

Flags specifying variables to be printed (temporarily redefined for
debug output of metrics.)

Inverse Jacobian of the nonorthogonal grid transformation, j-t.

Metric coefficients {=, ¢, (or _, if axisymmetric), and 4,.

Subroutine METS computes the metric coefficients and the Jacobian for the generalized nonorthogonal
coordinate tr_lsformation. The metric coefficients are defined in terms of the known (x-y) coordinates of
the computational mesh as:

ix = JYu

_y = -Jx n

Ux = -JY¢

ny = Jx_

¢z = -x_L, - y,¢y

qt = --Xzrlx -- Yz_y

where J is the Jacobian of the transformation, given by

j= I =
j-a (x_,Y'7 - x"ev_,)-1

The derivatives of x and y with respect to the computational coordinates are computed numerically us-
ing the same difference formulas as used for the governing equations. At interior points the variably cen-
tered difference formula presented in Section 6.0 of Volume 1 is used. At boundaries three-point one-sided
differencing is used. For t-derivatives at the _ = 0 and { = 1 boundaries,

208 PROTEUS 2-D Subprograms: METS PROTEUS Programmer's Reference

of -3L +4L+ -L+2
a_ 2a_

where w represents the _-index at the boundary (i.e., either 1 or N_). Where a + sign appears, the + sign
is used at the _ = 0 boundary, and the - sign is used at the _ = I boundary. An analogous formula is used
for r/-derivatives at the ,7 = 0 and rl = 1 boundaries.

Remarks

1. Since the current version of PROTEUS is limited to meshes that do not vary with time, the derivatives
x_ and y_ are set equal to zero.

2. This subroutine generates the output for the IDEBUG(7) option.

3. An error message is generated and execution is stopped if the grid transformation]acobian J changes
sign or equals zero. This indicates that the computational mesh contains crossed or coincident grid
lines. The error message is followed by a printout of the Cartesian coordinates, the Jacobian, and the
metric coefficients.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: METS 209

SubroutineOUTPUT(LEVEL)

Called by

MAIN
METS

Calls Purpose

PRTOUT Manage printing of output.

l.p.t

* ALPHAI, ALPHA2

CP, CV

DTAU

DUMMY

DXI, DETA

ETAX, ETAY, ETAT

* GAMR

GC

* IVOUT

Jl

LEVEL

* MACHR

M U, LA, KT

MUT

* NOUT

* N1, N2

P,T

PR

PRR

* PRT

RGAS

RtlO, U, V, W, ET

* RIIOR, TR, UR

TAU

X,Y

XIX, XIY, XIT

o.tp.t

ATITLE

DUMMY

Spatial difference centering parameters at and _2, for the ¢ and
directions.

Specific heats cp and c,.

Time step At.

A two-dimensional scratch array DIMENSION'ed (N1P,N2P).

Computational grid spacing A_ and A_/.

Metric coefficients r/x, qy (or rt, if axisymmetric), and _/t.

Reference ratio of specific heats, y,.

Proportionality factor g, in Newton's second law.

Flags specifying variables to be printed.

Inverse Jacobian of the nonorthogonal grid transformation, j-l.

Time level to be printed.

Reference Mach number M,.

Effective coefficient of viscosity #, effective second coefficient of
viscosity 2, and effective coefficient of thermal conductivity k.

Turbulent viscosity coefficient ta,.

Unit number for standard output.

Number of grid points N_ and N2, in the _ and _/directions.

Static pressure p and temperature T.

Reference pressure p,.

Reference Prandtl number Pr,.

Turbulent Prandtl number Prp

Gas constant R.

Static density p, velocities u, v, and w, and total energy Er.

Reference density p,, temperature T,, and velocity u,.

Time value _.

Cartesian coordinates x and y, or cylindrical coordinates x and r.

Metric coefficients _,, _ (or _, if axisymmetric), and _t.

A 20-character title for variable being printed.

A two-dimensional array containing the variable to be printed.

210 PROTEUS 2-D Subl_ograms: OUTPUT PROTEUS Programmer's Reference

Description

Subroutine OUTPUT manages the printing of the standard output. The variables available for printing
are listed and defined in "Fable 3-3 of Volume 2. The user-specified array IVOUT controls which variables
are printed.

Each variable to be printed is stored, in turn, in the scratch array DUMMY, from the common block
DUMMYI. The title printed with the variable is stored in the character array ATITLE. Subroutine
PRTOUT is then called to execute the actual write statements.

Remarks

I. A warning message is printed if a non-existent output variable is requested. The printout will continue
with the next requested output variable.

2. For output options 30, 31, 34, and 35, involving the pressure p, the value stored internally in the
PROTEUS code is redefined as follows:

2
P rUr

P = P Prgc

This isnecessary because input and output values ofp are nondimensionalized by the reference pressure
Pr = prR T,, while internal to the code itseff p is nondimensionalized by the normalizing pressure
p, = p,_. See Section 3.1.1 of Volume 2 for a discussion of the distinction between reference and nor-
realizing conditions.

3. The definitions of k_ and k, (IVOUT = 92 and 102) assume a constant turbulent Prandtl number is
being specified in namelist TURB. If the input value of PRT < 0, indicating the use of a variable tur-
bulent Prandtl number, the printed values of k / and k, will be incorrect.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: OUTPUT 211

Subroutine PAK (IDIR,NOLD1,NOLD2)

Called by Calls Purpose

GFOM CUBIC Manage packing and/or interpolation of grid points.
ROBTS

IDIR

* IPACK

NOLD1, NOLD2

* NI, N2

* SQ

X,Y

Direction flag; 1 if grid points are being redistributed in the _ di-

rection, 2 if in the rl direction.

Flags for grid packing option.

Number of grid points in the ¢ and ,1 directions in the original
grid.

Number of grid points N_ and N 2, in the _ and _ dircctions in the
new grid.

An array specifying the location and amount of packing.

Cartesian coordinates x and y, or cylindrical coordinates x and r,
in the old grid.

X,Y Cartesian coordinates x and y, or cylindrical coordinates x and r,
in the new grid.

Description

Subroutine PAK manages the redistribution of-the user-specified points in the computational coordinate
system. It is called whenever grid packing is used. It is also called when interpolation is necessary because
the computational coordinates are specified by reading them from a separate fde (the NGEOM = 10 option
in subroutine '3EOM), and the number of points in the fde is different from the number of points to be
used in the calculation. PAK is called once for each direction in which points are being redistributed.

The steps involved in subroutine PAK are described below. For clarity, this discussion assumes
IDIR = 1 (i.e., we are redistributing points in the _ direction.) An exactly analogous procedure is used for
IDIR = 2.

.

2.

Set NNEW and NOLD equal to the index limits in the _ direction for the new and old grids. Also set
NOPP equal to the index limit in the ,/direction for the old grid.

Get (ae)_, the normalized physical arc length along a coordinate line in the _ direction, from the begin-
nmg of the line to each grid point in the new grid. The normalizing distance is the total arc length of
the line, and thus these arc lengths apply to any coordinate line in the _ direction. If the points are not
being packed in the _ direction, but only interpolated, then

i-1
(az')i- NNEW- 1

.

for i = 1 to NNEW. In the new grid, the points will thus be evenly distributed in physical space along
each coordinate line in the _ direction. If the grid points axe being packed in the _ direction, subroutine
ROBTS is called to compute (ap), from the packing parameters specified by the user.

Begin loop from IOPP = 1 to NOPP. This loop thus runs over the points in the _ direction in the old
grid. We will be redistributing points in the _ direction for each g value in the old grid.

212 PROTEUS 2-D Subprograms: PAK PROTEUS Programmer's Reference

, Get (avp),, the normalized physical arc length along a coordinate line in the _ direction, from the
be#nning of the line to each grid point in the old grid. These values are found by first computing
the non-normalized arc lengths, as follows:

(atop)1= 0

(auP)i (auP)i_ 1 + \/(xi, j -- x)2= i-l,j + 02i,j--Yi-l,j) 2

.

6.

7.

for i = 2 to NOLDI. These values are normalized by setting

(aup)i
(auP)i- (aUP)NOLD1

for i= 1 to NOLDI. To eliminate any problems with roundoff error, (aUP)NOLDt is explicitly set
equal to 1.

Given x and aup for the old grid, and av for the new grid, call CUBIC to interpolate for x in the
new grid. Similarly interpolate for y.

Redefine the Fortran variables X and Y as the x and y coordinates in the new grid.

End of loop over the points in the _/direction in the old grid.

Remarks

° In the Fortran code, the comments sometimes refer to the "packing" direction. Tiffs terminolOgy ac-
tually means the direction in which grid points are being redistributed, even ff they are not being packed
but only interpolated. Similarly, references to the "packed" and "unpacked" grid actually mean the new
and old grids.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: PAK 213

SubroutinePERIOD

Called by Calls Purpose

EXEC Define extra line of data for use in computing coefficients for spatially
periodic boundary, conditions.

CP, CV

ETAX, ETAY, ETAT

Jl

KBCPER

M U, I,A, KT

NPT1

N1, N2

P,T

RItO, U, V, W, ET

RttOL, UI., VI., WI., ETL

TL

XIX, XIY, XIT

Specific heats cp and cv at time level n.

Metric coefficients rt_, % (or v/, if axisymmetric), and rb.

Inverse Jacobian of the nonorthogonal grid transformation, J-L

Flags for spatially periodic boundary conditions in the _ and rt

directions; 0 for non-periodic, 1 for periodic.

Effective coefficient of viscosity #, effective second coefficient of

viscosity £, and effective coefficient of thermal conductivity k.

N_ for non-periodic boundary conditions, N_ + 1 for spatially pe-
riodic boundary conditions in _.

Number of grid points Nt and N> in the _ and _/directions.

Static pressure p and temperature T at time level n.

Static density p, velocities u, v, and w, and total energy Er at time
level n.

Static density p, velocities u, v, and w, and total energy Er from
previous ADI sweep.

Static temperature T from previous ADI sweep.

Metric coefficients _, _y (or _, if axisymmetric), and _,.

All of the flow and metric-related input parameters listed above, at i = N_ + 1 for periodic boundary

conditions in the ¢ dircction, and at j = A½ + 1 for periodic boundary conditions in the r/direction.

l)cseription

Subroutine PERIOD adds, in effect, an additional set of points at i= N_ + 1 for periodic boundary

conditions in the _ direction, and at j = N 2 + 1 for periodic boundary conditions in the q direction. This
allows us to use central differencing in the periodic direction, at i = N_ and/or j = N 2, computing the coeffi-
cient submatrices and source term subvector in the same way as at the interior points. 3°

For periodic boundary conditions in the ¢ direction, the extra points are added by setting

fN 1+l,j =f2,j

where j = ! to A'> and frepresents one of the flow variables or metrics. Similarly, extra points are added

at (i, N2 + 1) for periodic boundary conditions in the q direction.

30 See Section 8.2.2 of Volume 1 for details on the solution procedure for spatially periodic boundary conditions.

214 PROTEUS 2-D Subprograms: PERIOD PROTEUS Programmer's Reference

Remarks

. The loop defming the extra points for periodic boundar5" conditions in the c_ direction runs in the _l
direction from 1 to N2. For periodic boundary conditions in the r/ direction, however, the corre-

sponding loop runs in the _ direction from 1 to NPT1, not N1. If the _ boundaD" conditions are
non-periodic, NPT1 = N 1. If periodic boundary conditions are being used in both directions, however,
NPTI = N1 + 1, and using NPT! as the upper limit on the loop is necessary" to define tile new comer

point at (N_ + 1,,¥ 2 + 1).

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: PERIOD 215

Subroutine PLOT (LEVEL)

Called by Calls Purpose

MAIN Write files for post-processing by CONTOUR or PLOT3D plotting
programs.

CP, CV

ETAX, ETAY

* GAMR

GC

* IPLOT

LEVEL

* LR, UR, RHOR, TR

* MACHR

* NPLOT

* NPLOTX

* NSCR 1

* NI, N2

P,T

PR

* RER

* RG

RGAS

RHO, U, V, W, ET

TAU

* TITLE

X,Y

XIX, XIY

o t0m

None.

Specific heats cp and c,.

Metric coefficients _ and _y (or _/gif axisymmetric).

Reference ratio of specific heats, y,.

Proportionality factor g¢ in Newton's second law.

Flag specifying type of plot file to be written.

Time level to be written into the fde (0 for initialization, and -1
to read the scratch file and write XYZ and Q flies with the
IPLOT = -3 option).

Reference length L,, velocity u, density Pr, and temperature Tg.

Reference Mach number Mr.

Unit number for writing CONTOUR file, or P1.OT3D Q fde.

Unit number for writing PLOT3D XYZ file.

Unit number for scratch file.

Number of grid points N_ and N 2, in the _ and rt directions.

Static pressure p and temperature T.

Reference pressure Pr.

Reference Reynolds number Rer.

Dimensional gas constant R.

Dimensionless gas constant R.

Static density p, velocities u, v, and w, and total energy E r.

Current time value x.

Case title.

Cartesian coordinates x and y, or cylindrical coordinates x and r.

Metric coefficients _x and _y (or _, if axisymmetric).

Description

Subroutine PLOT writes a file or files, commonly called plot files, for post-processing by the CON-

TOUR or PLOT3D plotting programs. The type of files written is controlled by the user-specified pa-
rameter IPLOT. The format and contents of the different types of plot flies are described in detail in Section
4.2 of Volume 2. They are therefore described only briefly here.

216 PROTEUS 2-D Subprograms: PLOT PROTEUS Programmer's Reference

CONTOUR Plot t_)'le (IPLOT = + 1)

If IPLOT = 1, a CONTOUR plot file is written with the title and reference conditions included at each
time level. The value of n is written into the header for each time level, but "r, the time itself, is not written
into the file. No initialization step is necessa_'.

If IPI,OT = - 1, a CONTOUR plot fiJe is also written, but the title and reference conditions are written

only at the beginning of the file. In addition the time z,: is written into the file at each time level. In this
case the initialization step consists of writing the title and refcrence conditions at the beginning of the file.

PLOT3D/WtlOLE Plot Files (IPLOT = 2)

If IPLOT = 2, XYZ and Q files are written in PLOT3D:WI1OLE fonnat. The XYZ file is written only
during the hlitialization step. The Q file is written at each time level requested by the user. The Q file will
thus consist of multiple scts of data, each containing the computed results at a sin_e time level. The time

xl, t is written into the header for each set of data in the Q file. Since PROTEUS 2-1) is two-dimensional,
N3, the number of points in the z direction in tile XYZ and Q files, is set equal to 1.

PLO73D/PLANES Plot files (IPLOT= 3)

If IPI,OT = 3, XYZ and Q files are written in PIDT3D/PI.ANtiS format. Since PROTF, US 2-I) is
two-dimensional, N3, the number of points in the z direction in the XYZ and Q files, is set equal to 1.
This makes the XYZ and Q files identical to those created using the IPl OT = 2 option.

PLO73D/PLANES Plot t_Tles (IPLOT= -3)

The files created with this option are similar to those created with the IPI_OT = 3 option, cxcept the

time "r,,j is written into the z slot in the XYZ file, and the number of points in the "z" direction is set equal
to the number of time levels in the XYZ and Q files.

ttowever, because the calculation may converge or become non-physical, the number of time levels that
end up being written into the files is not known until the end of the PROTEUS run. Therefore, as the
calculation proceeds the results are actually written into a scratch file. N3, the counter for the number of
time levels, is set equal to zero in the initialization step and updated each time a time level is added to the
scratch file. At the end of the PI?,OTEUS run the scratch file is read and the XYZ and Q files arc written.

PLOT2D Plot bTles (IPLOT = 4)

If IPLOT = 4, XYZ and Q files are written in PlOT3I)'s 2I) format. The XYZ file is written only
during the initialization step. The Q file is written at each time level requested by the user. The Q file will
thus consist of multiple sets of data, each containing the computed results at a single time level. The time
rl, _ is written into the header for each set of data in the Q file.

Remarks

1. For the CONTOUR plot file, the IPLOT = -1 option is the better one to use. The II'I.OT = 1 option
is included only to be consistent with the various PI,OT3D options.

2. In defining the pressure to be written into the CONTOLR plot file, the value stored internally in the
PROTEUS code is redefined as follows:

2
p:.u:

P = P Prgc

This isnecessary because input and output values ofp are nondimensionalized by the reference pressure
p,= p_RT,, while internal to the code itself p is nondimensionalizcd by the normalizing pressure
p_ = p_u]. See Section 3.1.1 of Volume 2 for a discussion of the distinction between rcference and nor-
malizing conditions.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: PI.OT 217

3. The current version of PLOT3D does not work for multiple time levels, although future versions might.
Thus the IPLOT = 2, 3, and 4 options, while containing multiple time levels, cannot easily be used to

create plots showing the time development of the flow. You can, however, fake it out using the
IPLOT= -3 option. With this option, plots can be generated at different time levels by plotting at
different PLOT3D "z" stations.

4. Note that the time r_._ written into the Q fde header with the IPLOT = 2, 3, and 4 options is the time
at the point _ =r/= 0. If the input variable IDTAU = 5 or 6, T will vary in space and therefore
Ti, j _[= T[, I,

5. To save storage, the Fortran variable S, which is normally used for the source term subvector in the
block tridiagonal system of equations, is used to store the Q variables that are written into the PLOT3D
Q fde.

6. PLOT3D assumes that velocity is nondimensionalized by the reference speed of sound a, = (y,kT,)_/2,
and that energy is nondimensionalized by p,a]. In PROTEUS these variables are nondimensionalized

by u, and p_u]. That is why the reference Mach number M r appears in the definitions of S(,,2) through
S(,,5).

7. An error message is generated and execution is stopped if an illegal plot file option is requested.

218 PROTEUS 2-D Subprograms: PLOT PROTEUS Programmer's Reference

Subroutine PRTttST

Called by Calls

MAIN

Purpose

Print convergence history.

* ICI1ECK

* IRES'I"

IT

IrI'BEG

NC, NXM, NYM, NZM, NEN

NEQ

* NtIIST

* NHMAX

* NOUT

Convergence checking interval.

Flag for restart file; 0 for no restart file, 1 to write a restart file, 2
to read and write a restart file.

I_ast computed time step number n.

The time level n at the beginning of a run.

Array indices associated with the continuity, x-momentum,
y-momentum (or r-momentum if axisymmetric), swirl momen-
tum, and energy equations.

Number of coupled equations being solved, N,q.

Unit number for convergence history' file.

Maximum number of time levels allowed in the printout of the
convergence history file (not counting the first two, which are al-
ways printed.)

Unit number for standard output.

None.

Description

Subroutine PRTttST prints the convergence history as part of the standard output. The information
is obtained from the unformatted convergence history file written in subroutine RESID. The parameters
printed are described in Section 4.1.5 of Volume 2, and the unformatted convergence history, file is described
in Section 4.3 of Volume 2. To avoid undesirably long tables, the convergence parameters are printed at
an interval that limits the printout to NHMAX time levels. As described in Section 4.1.5 of Volume 2,
however, they are always printed at the first two time levels.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: PRTHST 219

Subroutine PRTOUT (ATH'LE,LEVEL,AVAR)

Callcd by Calls Purpose

OUTPUT Print output.

ATITLE

AVAR

DTAU

* I DTA U

* IPRT1A, IPRT2A

LEVEL

* IIR, [JR

* NOUT

NPRTI, NPRT2

TAU

None.

Description

A 20-character title for variable being printed.

A two-dimensional array containing the variable to be printed.

Time step At.

Flag for time step selection method.

Indices for printout in the _ and rt directions.

Time lcvcl to be printed.

Reference length L, and velocity u,.

Unit number for standard output.

Total number of indices for printout in the ¢ and _ directions.

Current time value x.

Subroutine PRTOUT performs the actual printing of the standard output fde. It prints the variable
AVAR, with the title ATITLE. The output is printed in columns running in the rt direction. The rows
run in the _ direction. If the results at every grid point are printed, there will be a total of N, columns, each
with N 2 rows. The columns are grouped in super-rows of up to 10 columns each.

The steps involved are as follows:

1. Set the total number of colmrms, and rows per super-row.

2. Redefine AVAR, the input array containing the variable to be printed, including only the elements re-
quested.

3. Dctcrminc the number of super-rows. If NCOL is not exactly divisible by 10, the last super-row will
have less than 10 columns.

4. Print the title for the variable. If the time step is constant in space, the dimensional time t and time step
At are printed with the title.

5. Begin loop over the number of super-rows.

6. Set NC 1 and NC2 equal to the number of the first and last column in this super-row. (l.e, for the
first super-row NCI and NC2 will be 1 and 10, for the second they will be 11 and 20, etc. For the
last super-row, NC2 will be NCOL.)

7. Print the heading for the super-row, labeling each column with the proper _ index.

8. Print the super-row itself, labeling each row With the proper r/index.

9. End of loop over the numbcr of super-rows.

220 PROTEUS 2-D Subprograms: PRTOUT PROTEUS Programmer's Reference

Subroutine RESID (IAVR)

CMled by Calls Purpose

EXEC ISAMAX Compute residuals and write convergence history file.
SASUM
SNRM2

CIIGAVG

CtlGMAX

I)TAU

DUMMY

* t-;I_S

IAVR

* IAV2E, IAV4E

* ICt IECK

* ICTt';ST

* ID'I'AU

* IllS'FAG

* ISWIRI,

IT

ITBEG

* IR, UR

NEQ

* NItlS'I"

* NH'AVG

NPTI, NPT2

* NI, N2

S

TAU

LRMAX

Rt:'SAVG

RESIn2

Maximum change in absolute value of the dependent variables,

averaged over the last NITAVG time steps, AQo,,.

Maximum change in absolute value of the dependent variables
over previous time step (or NITAVG- 1 time steps if
ICI'EST= 2), AQ

Time step At.

A two-dimensional scratch array.

Convergence level to be reached, e.

Flag speci_,ing whether residual is computed without or with the
artificial viscosity terms; 1 for without, 2 for with.

Flags for second- and fourth-order explicit artificial viscosity.

Convergence chccking interval.

Flag for convergence criteria to be used.

Flag for time step selection method.

Flag for constant stagnation enthalpy option.

Flag for swirl in axisymmetric flow.

Current time step number n.

The time level n at the beginning of a run.

Reference length I., and velocity u,.

Number of coupled equationa being solved, .V,v.

Unit number for converger_ce history file.

Number of time steps in moving average convergence test.

•V_ and ,.V2 for win-periodic boundary conditions, N_ + 1 and
N2 + 1 for spatially' periodic boundary conditions in { and q.

Number of grid points .,V_ and N> in the _ and rl directions.

Source term subvector S for first AI)I sweep.

Current time value "r.

Grid indices i and j, in the _ and r/directions, corresponding to the
location of RESMAX.

"I'tae average absolute value of the residu,'d, Ro,a.

The L2 norm of the residual, RL2.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: RESID 221

RES*IAX Themaximumabsolutevalueof theresidual,R_,.

Description

Subroutine RESID computes various measures of the residual, and writes the convergence histo D" fde.

For problems without artificial viscosity, the steady-state form of the governing partial differential
equations can be written as

0_

0k 0f" 0 'v
0. +--SU +

The residual is defined as the number resulting from evaluating the right hand side of the above equation.
For first-ordcr time differencing, this is simply the source term for the first ADI sweep, divided by the time
step At. 3' The residual at a specific grid point and time level is thus

R.n . .?./ r/,,1 = Si, j/(mT)i,j

where S is the source term for the first ADI sweep. Separate residuals are computed for each governing
equation.

Adding artificial viscosity, however, changes the governing equations. With artificial viscosity, the dif-
ference equations actually correspond to the following differential equations at steady state) 2

O

+ --_ (A_) 2 02(jQ_____) + (At/) 2 02(JQ)
0_ 2 0,_2

j (AO 4 oa(jQ________) + (Art) 40a(JQ______)
O _ 4 Oyi 4

For cases run with artificial viscosity, therefore, the residual should include the explicit artificial viscosity

terms.]'he implicit terms do not appear, since they difference A0, and in the steady form of the equations

A0 = 0 . Since the explicit artificial viscosity terms are added to the source term for the first ADI sweep,
they are automatically included in the residual.

Three measures of the residual are computed for each governing equation - the/-2 norm of the residual,
the average absolute value of the residual, and the maximum absolute value of the residual. In addition,
the (_al) indices corresponding to the location of the maximum residual are saved. The L 2 norm of the
residual is defmed as

Z 2) 1/2R G = (Ri, j)

In computing the residuals, the summations, maximums, and averages are over all interior grid points, plus
points on spatially periodic boundaries.

3, See equation (8.5a) in Volume 1. For first-order time differencing, 02 = 03 = 0.

3., qhcse equations represent the use of the constant coefficient artificial viscosity model. The nonlinear coefficient
model is more complicated, but the same principle applies.

222 PROTEUS 2-D Subprograms: RESID PROTEUS Programmer's Reference

For cases run with artificial viscosity, subroutine RESID is called from EXEC both before and after the

artificial viscosity terms have been added to the equations. The residuals are thus computed both with and
without the artificial viscosity terms. This may provide some estimate of the overall error in the solution
introduced by the artificial viscosity. Convergence is determined by the residuals with the artificial viscosity
terms included.

In addition to computing the residuals, subroutine RESID writes the convergence history file. The
contents and format of this file are described in detail in Section 4.3 of Volume 2.

Remarks

1. The Cray BLAS routines SNRM2, ISAMAX, and SASUM are used in computing the/-2 norm of the
residual, the maximum absolute value of the residual, and the average absolute value of the residual,

respectively.

2. The scratch array DUMMY, from the common block DUMMY1, is used to store the values of the
residual at each grid point.

PRO'I'EUS 2-D Programmer's Reference PROTEUS Subprograms: RESID 223

Subroutine Rt!ST (IOPT)

Called by Calls Purpose

INITC METS Read and'or write restart file.
*lAIN

Input When Reading the Restart File

* GAMR

* l ISTAG

* IHS'I'AG

IOPT

* NRQIN

* NRXIN

RGAS

Input When Writing the Restart File

I0 PT

IT

* MACIIR

* NRQOt!T

* NRXOUT

* NI, N2

* RER

RttO, U, V, W, ET

RItOI;, I;l, VI;, WI_, I!'IL

TAU

X,Y

Output 'When Reading the Restart File

DXI, DETA

II'BI'/}

MACttR

NI, N2

RER

RIIO, U, V, W, I:T

RilOI , I'L, VI,, WL, ISTI.

Reference ratio of specific heats, y,.

Stagnation enthalpy h r used with constant stagnation enthalpy
option.

Flag for constant stagnation enthalpy option.

l:lag specifying I/() operation; 1 to read, 2 to write.

Unit number for rcading the restart flow field.

t ;nit number t_r reading the restart computationM mesh.

I)imensionless gas constant R.

Flag specifying I/O operation; 1 to read, 2 to write.

Current timc step number n.

Reference Mach number M,.

[Tnit number for writing the restart flow field.

17nit number for writing the restart computational mesh.

Number of grid points N l and _%, in the _ and r/dircctions.

Reference Reynolds number Re,.

Static density p, velocities u, v, and w, and total energy" E r at time
level n + 1.

Static density p, velocities u, v, and w, and total energy Er at thne
level n.

Computational time r at time lcvcl n + 1.

Cartesian coordinates x and y, or cylindrical coordinates x and r.

Computational grid spacing A{ and A_/.

The time level n at the beginning of the new run.

Reference Mach number M,.

Number of grid points N_ and N 2, in the _ and q directions.

Reference Rcynolds number Re.

Static density p, velocities u, v, and w, and total energy L"r at time
level ITBEG.

Static density p, velocities u, v, and w, and total energy E r at time
level ITBEG- 1.

224 PROTEUS 2-D Subprograms: REST PROTEUS Programmer's Reference

T, TL
TAU

X,Y

Static temperature T at time levels ITBEG and ITBEG - 1.

Computational time z at time level ITBEG.

Cartesian coordinates x and y, or cylindrical coordinates x and r.

Output When Writing the Restart File

None.

Description

Subroutine REST reads and/or writes the restart files. Restarting a calculation requires two unformatted
files - one containing the computational mesh and one containing the flow" field.

If subroutine REST is being used to read the restart files, the computational mesh is first read from unit
NRXIN. The grid increments A_ and Arl are then set, and subroutine METS is called to compute the
metric coefficients and the Jacobian of the grid transformation.

The flow field file is read next, from unit NRQIN. It normally contains the results at the last two time

levels that were computed during the previous run. If only one level is present in the file, however, the re-
suits at level n - 1 are set equal to those at level n. The beginning time level for the time marching loop is
set equal to the level stored in the restart file. The flow field variables in the restart fde axe the conservation
variables Q, nondimensionalized as in the plotting program PLOT3D. 33They therefore must be converted
into the primitive variables used in PROTEUS. The temperature is then computed from the perfect gas
equation of state, with G and c, defined using the input reference conditions.

When writing the restart files, the file containing the computational mesh is written onto unit
NRXOUT. The primitive flow variables are thcn redefined as conservation variables and
nondimensionalized as in PLOT3D. They are then written onto unit NRQOUT.

Remarks

.

2.

.

If, in the input namelist RSTRT, NRXOUT and NRQOUT are set equal to NRXIN and NRQIN,
respectively, the output restart files will overwrite the input restart files.

Except for the variables at time level n - 1, the restart files have the same format as the XYZ and Q files
created using the IPLOT = 2 and 3 options. These restart fdes can thus also be used as XYZ and Q
files for the PLOT3D plotting program. Since N3 = 1, the n- 1 level will not be read by PLOT3D.

The temperature T is computed using the equation of state, which contains a specific heat coefficient
(either Gor c,, depending on whether the stagnation enthalpy is assumed constant or not.) In sub-
routine REST, a constant value of specific heat is used, consistent with the reference temperature 7",.
If the user specified constant specific heat (i.e., a value for _,, was read in), this is not a problem.
However, if the temperature-dependent specific heat option is being used (i.e., a value for),, was not
read in), the equation of state and the empirical equation for specific heat are coupled. For this reason,
in INITC (the routine that calls REST), T is recomputed by calling EQSTAT after the specific heats
have been computed in FTEMP. Ideally, this coupling would be handled by iteration between
FTEMP and EQSTAT. This is not currently done in PROTEUS, however.

33 See Sections 4.2.3 and 4.4 of Volume 2.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: REST 225

SubroutineROBTS(NP,A,B,XP)

Calledby
PAK

Calls Purpose
PackpointsalongalineusingRobertstransformation.

A

NP

Parameter c_ in Roberts transformation formula specifying lo-
cation of packing: 0.0 to pack near XP = 1 only, 1.0 to pack near
XP = 0 only, and 0.5 to pack equally at XP = 0 and 1.0.

Parameter/_ in Roberts transformation formula specifying amount
of packing. A value approaching 1.0 from above gives denser
packing.

Number of grid points along the line.

Coordinates of packed grid points along the line.

Description

Subroutine ROBTS packs points along a line of length one using a transformation due to Roberts
(1971). The basic transformation is given by

Xp--

(//+ 2_)/_ • -/_ + 2a

(2a + l)(1 +//_')

where

and xp and xvv are the packed and unpacked (i.e., evenly spaced) coordinates along the line. The parameter
determines the packing location. For a = 0, the points will be packed only near xp = 1, and for _ = 1/2

the points will be packed equally near x v = 0 and xp = 1. The packing parameter fl determines the amount
of packing. It is a number greater than 1, but generally 1.1 or below. The closer/_ is to 1, the tighter the
packing will be.

It may seem logical to set _ = 1 to pack points near x e = 0. With the basic transformation, however,
this doesn't work. In PROTEUS we get around this problem by replacing a in the above transformation
with a,, where aw = _ if a = 0 or 1/2, and aw = 0 if c_= 1. If _ = 0 or 1/2, no further action is necessary.
If a = 1, however, we must invert the resulting x, values and re-order the indices. I.e., for i = 1 to NP, we
set

(xt,1) i = 1 - (Xp) i

After this operation, the array x m will run from 1 to 0, packed near 1. To re-order the indices, for i = 1 to
N P we set

(xp)?,,e_i+l = (xpl)i

226 PROTEUS 2-D Subprograms: ROBTS PROTEUS Programmer's Reference

After this operation, xp will run from 0 to 1, packed near 0.

FinMly, to ensure round-off error doesn't affect the endpoint values, we set (xp) t = 0 and (xp)xe = 1.

Remarks

1. The namelist input variable SQ(IDIR,1), which is used to specify the packing location in direction
IDIR, is actually equal to 1 - _. Therefore, setting SQ(IDIR,I) = 0 results in packing near the { or
rt = 0 boundary, and SQ([I)IR,1) = 1 results in packing near the _ or _t = l boundary.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: ROBTS 227

Function SASUM (N,V,INC)

Called by Calls

RESID

Purpose

Compute the sum of the absolute values of the elements of a vector.

l.p_m

N

V

INC

Number of elements in the vector to be summed.

Vector to be summed.

Skip distance between elements of V. l'or contiguous elements,
INC = 1.

SASUM Sum of the absolute values of the elements of V.

Description

Function SASUM computes the sum of the absolute values of the elements of a vector.
dimensional vector, the use of SASUM is straightforward. For example,

NP

SASUM(NP,V,1) = E Vi
i=1

For a one-

A starling location can be spccified, as in

NP

SASUM(NP - 4,V(5),1) = EVi
i=5

Multi-dimensional arrays can be used by taking advantage of the way Fortran arrays are stored in
memory, and specifying the proper vector length and skip distance. For instance, if A is an array dimen-
sioned NI)IM1 by NDIM2, then

NDIMI ND1M2

SASUM(NDIMI*NDIM2,A,1)= E E Ai,j
i=1 j=l

One dimension at a time can also be summed. For example,

NDIM1

SASUM(NDIM1,A(I,5),I)= E A_,5
i= 1

Similarly, by specifying a skip increment,

SASUM(NDIM2,A(5,1),NDIM 1) =

NDIM2

E A5,j
j=l

Remarks

1. SASUM is a Cray BLAS (Basic Linear Algebra Subprograms) routine (Cray Research, Inc., 1988b).

228 PROTEUS 2-D Subprograms: SASUM PROTEUS Programmer's Reference

Subroutine SGF, FA (A,LDA,N,IPVF,INFO)

Called by Calls Purpose

B('EI,IM ISAMAX Factor a matrix using Gaussian elimination.
B V I JP

A

Li)A

N

An array containing the matrix ._ to be factored, dimensioned as
A(IDe\,N).

The leading dimension of the array A.

The order of the matrix A.

A

IPVT

INI:O

,,\i1 upper triangular matrix and the multipliers which were used
to obtain it. The factorization c:m be written as A = LU, where

L is a product of permutation and unit lmvcr triangular matrices,
and U is upper triangular.

A vector of length N containing pivot indices.

An error flag: 0 for n<mnal operation, /c if [7_ = 0.

l)escription

Subroutine SGEFA is used in combination with subroutine SGESI, to solve the matrix equation

Ax = B. If the fortran arrays A and B represent A and B, where A is a square N by: N matrix and B is a
matrix (or vector) with NCOL columns, and if the leading dimension of the Fortran array A is l,I)A, then
the t:ortran sequence

CALL SGEFA (A,LDA,N,IPVT,INFO)
DO 10 J = 1,NCOL
CALL SGFSL (A,LDA,N,IPVT,B(I,J),O)

10 CONTINUE

computes A _B, storing the result in B.

Remarks

1. SGEFA is a Cray I,INPACK routine (Cray Research, Inc., 1988b).

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: SGEFA 229

Subroutine SGESL (A,LDA,N,IPVT,B,JOB)

Called by Calls Purpose

BCELIM Solve the matrix equation Ax = B or Arx = B using the factors com-
BVUP puted by SGEFA.

B

I PVT

JOB

LDA

N

Output

B

Description

The two-dimensional output array A from SGEFA containing the
factorization of matrix A.

The right-hand side vector B.

The output array IPVT of pivot indices from SGEFA.

Flag specifying type of matrix equation: 0 to solve Ax = B; non-
zero to solve Arx = B.

The leading dimension of the array A.

The order of the matrix A.

The solution vector x.

Subroutine SGESL is used in combination with subroutine SGEFA to solve the matrix equation
Ax = B. See the description of subroutine SGEFA for details.

Remarks

1. SGESL is a Cray LINPACK routine (Cray Research, Inc., 1988b).

230 PROTEUS 2-D Subprograms: SGESL PROTEUS Programmer's Reference

Function SNRM2 (N,V,INC)

Called by Calls Purpose

RESID Compute the/_.2 norm of a vector.

N

V

INC

The number of elements in the vector V.

The vector whose norm is to be computed.

Skip distance between elements of V. For contiguous elements,
INC = 1.

Output

SNRM2 The/_ norm of the vector V.

Description

Function SNRM2 computes the/.2 norm of a vector. For a one-dimensional vector, the use of SNRM2

is straightforward. For example,

S NRM2(NP,V, 1) =

1/2

A starting location can be specified, as in

SNRM2(NI' - 4,V(5), 1) =

Multi-dimensional arrays can be used by taking advantage of the way Fortran arrays are stored in
memory, and specifying the proper vector length and skip distance. For instance, if A is an array dimen-

sioned NDIMI by NDIM2, then

SNRM2(NDIM I*NDIM2,A, 1) =

One dimension at a time can also be summed. For example,

/NDIMI)1]2SNRM2(NDIM1,A(1,5),I) = (2i=1 A25

Similarly, by specifying a skip increment,

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: SNRM2 231

Remarks

SNRM2(NDIM2,A(5,1),NI)I.X,I 1) =

NDIM2 _t/2

j=l /

1. SNRM2 is a Cray BI.AS (Basic I.inear Algebra Subprograms) routine (Cray Research, Inc., 1988b).

232 PROTEUS 2-D Subprograms: SNRM2 PROTEUS Programmer's Reference

Subroutine TBC

Called by Calls Purpose

MAIN Set time-dependent boundary condition values.

* GTBC 1, GTBC2

IT

ITBEG

ITEND

* JBCI, JBC2

* JTBC1, JTBC2

NBC

NEQ

* NOUT

* NTBC

* NTBCA

* N1, N2

FBCI, FBC2

Time-dependent surface boundary condition values for the _ and
directions.

Current time step number n.

The time level n at the beginning of a run.

Final time step number.

Surface boundary condition types for the _ and _ directions.

Flags for type of time dependency for boundary conditions in the
and r[directions.

Cray PARAMETER specifying number of boundary conditions
per equation.

Number of coupled equations being solved, N,q.

Unit number for standard output.

Number of valucs in tables for general unsteady boundary condi-
tions.

Time levels at which genera/ unsteady boundary conditions are
specified.

Number of grid points N_ and N2, in the _ and r/directions.

Point-by-point boundary condition values for the ¢ and 17 di-
rections.

GBCI, GBC2

Description

Subroutine TBC sets time-dependent boundary condition values.

allowed - general and periodic.

General Time-Dependent Boundary Conditions

Surface boundary condition values for the { and r/directions.

Two types of time dependency are

General time-dependent boundary conditions are set using linear interpolation on an input table of
boundary condition values vs. time level. Thus, the boundary condition value is

n+ 1--n_

n t - t/t

ltere n is the current known time level in the time marching scheme, g, and n, represent the input table of
boundary condition values vs. time level, and i is the index in the lane for which

n I < n + 1 < nl +1

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: TBC 233

If n + 1 < n_, then g°'_ is set equal to the first value in the table, g_. Similarly, ifn + 1 > nff, where N is the
index of the last entry in the table, then g_ is set equal to the last value in the table, gff.

In Fortran, g = GBCI or GBC2, g, = GTBC1 or GTBC2, n t = NTBCA, and N= NTBC.

Time-Periodic Boundary Conditions

Time-periodic boundary conditions (not to be confused with spatially periodic boundary conditions) are
of the form

gn+, = gfl + gt2 sin[gt3(n + 1) + g_-]

where g_ through _ are given by the first four elements of GTBC 1 or GTBC2.

Remarks

I. An error message is generated and execution is stopped if an invalid type of unsteadiness is requested
for the boundary values.

234 PROTEUS 2-D Subprograms: TBC PROTEUS Programmer's Reference

Subroutine TIMSTP

Called by Calls

MAIN 1SAMAX

Purpose

Set computational time step.

l._em

* CFLMIN, CFI,MAX

C! IGMAX

* CttGI, CtIG2

CP, CV

* DT

DTAU

* DTF1, DIF2

* DTMIN, DTMAX

DXI, DETA

ETAX, ETAY, ETAT

* IDTAU

IT

ITSEQ

* NDTCYC

NEQ

* NOUT

* NI, N2

RGAS

"l"

U, V

XIX, XIY, XIT

* CFI,

DTAU

l)e_ription

Minimum and ma,,dmum CFI, numbers allowed in II)TAU = 2

and 6 options.

Maximum change in absolute value of the dependent variables
over previous time step (or NITAVG-1 time steps if
ICTI!ST = 2), AQ,.o_.

Minimum and maximum change, in absolute value, that is al-
lowed in any dependent variable before increasing or decreasing
AT in II)TAU = 2, 4, and 6 options.

Specific heats cp and c_ at time level n.

Time step Ar in 1DTAU = 3 and 4 options.

Old computational time step At.

Factors multiplying or dividing Ar if solution changes too slowly
or quickly in IDTAU = 2, 4, and 6 options.

Minimum and maximum Ar allowed in IDTAU = 4 option, or
used In-IDTAU = 7 option.

Computational grid spacing A{ and At/.

Metric coefficients r/_, _Ty(or _/, if axisyrnmetric), and r/,.

Flag for time step selection method.

Current time step number n.

Current time step sequence number.

Number of time steps per cycle for IDTAU = 7 option.

Number of coupled equations being solved, N,q.

Unit number for standard output.

Number of grid points ,.V_and N2, in the _ and _/directions.

Gas constant R.

Static temperature T at time level n.

Velocities u and v at time level n.

Metric coefficients _, _y (or _, if axisymmetric), and ¢,.

New CFL number in II)TAU = 1, 2, 5, and 6 options.

New computational time step At.

Subroutine TIMSTP computes the time step size AT.
methods currently available for setting and/or modifying A-r.

The following sections describe the various

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: TIMSTP 235

1DTA U = I

This option sets a global (i.e., constant in space) time step A-c equal to the minimum of the values at
each grid point computed from the input parameter CFL(ITSEQ). I.e.,

. (AT)i,j = (CFL) min(AzcB)i,j

where Azc:t is the inviscid CFL limit, given in generalized coordinates as (Shang, 1984).

Arc//= +

llere U = 4, + _,u + _v and V = rt, + _/,u + %v are the contravariant velocities without metric normaliza-

tion, and a = _RT is the speed of sound.

IDTA L: = 2

For the first time step, this option is identical to the IDTAU = 1 option. After the first time step,
however, CFL is modified to keep AQ the maximum change in absolute value of the dependent vari-
ables, within user-specified limits. The rules used to increase or decrease CFL may be summarized as fol-
lOWS;

AQmax < CHG 1

AQmax > CHG2

A Qmax > O. 15

CFL = minE(DTF I)(CFL), CFLMAX]

=> CFL = max[CFL/DTF2, CFLMIN]

=_ CFL=CFL/2

The time step Ar is then set using the same formulas as in the IDTAU = 1 option.

IDTAU = 3

This option sets a global (i.e., constant in space) time step Ar equal to the input parameter DT(ITSEQ).

IDTA U = 4

For the first time step, this option is identical to the IDTAU = 3 option. After the first time step,
however, Az is modified to keep AQ the maximum change in absolute value of the dependent variables,
within user-specified limits. The rules used to increase or decrease A_- may be summarized as follows:

AQmax< CHGI _ Az = min[(DYF1)A-r, DTMAX]

AQmax > CttG2 _ Ar =max[A_r/(DTF2), DTM1N]

AQmax > 0.15 _ AT = At/2

IDTA U = 5

This option sets a local (i.e., varying in space) time step A-r computed at each grid point from the input
parameter CFL(ITSEQ). I.e.,

(AT)i,j = (CFL)(A.ccfl)i,j

where Azc/_ is given above in the description of the 1DTAU = 1 option.

IDTAU = 6

For the ftrst time step, this option is identical to the IDTAU = 5 option. After the first time step,
however, CFL is modified to keep AQ the maximum change in absolute value of the dependent vari-
ables, within user-specified limits. The rules used to increase or decrease CFL are the same as in the
IDTAU = 2 option.

236 PROTEUS 2-D Subprograms: TIMSTP PROTEUS Programmer's Reference

IDTAU = 7

This option sets a global (i.e., constant in space) time step Ar with logarithmic cycling. The formula
used is

ATma x ,_/(_icy c 1)

Ar = ATmin Arrnin

where N = mod(n - 1, Ncy,) and n is the current known time level. The time step Ar is thus cycled repeat-
edly between Az,,,, and Az,,o, every Ncyc time steps. The values of Ar Ar and A_c are given by the

input parameters DTMIN, DTMAX, and NDTCYC.

Remarks

I. In AQ used in the IDTAU= 2, 4, and 6 options, the change in Er has been divided by
R/(y, - 1) + 1/2. This is equivalent to dividing the dimensional value Er by

2
p rR _r p rl,lr

ET"- rr- 1 + "---2---

This makes the change in total energy the same order of magnitude as the other conservation variables.

2. An error message is generated and execution is stopped if an illegal time step selection option is re-

quested.

3. A warning message is printed with the IDTAU = 2, 4, and 6 options if Az or the CFL number is cut
in half because AQm,_ > 0.15.

4. The Cray BLAS routine ISAMAX is used in computing the maximum value of AQ_,ox for all the
equations.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: TIMSTP 237

J

Subroutine TURBBL

Called by Calls Purpose

INITC

SLAIN

BLIN1
BLIN2
BLOUT1
Bt,OUT2
VORTEX

Manage computation of turbulence parameters using Baldwin-Lomax
algebraic model.

CP

* ITETA, ITXI

* IWALLI, IWALL2

* KBC1, KBC2

M U, LA, KT

* NOUT

* NI, N2

PRR

* PRT

* RER

* REXTI, REXT2

RtlO, U, V, W

X,Y

IWAELI, IWALL2

MU, I.A, KT

M [7I

Description

Specific heat %

Flags for computation of turbulent viscosity along constant _ and
¢ lines.

Flags indicating whether or not the ¢ and _/boundaries are walls.

Boundary types for the ¢ and r/directions.

I.aminar coefficient of viscosity _z, laminar second coefficient of
viscosity).z, and laminar coefficient of thermal conductivity k,

Unit number for standard output.

Number of grid points N_ and N 2, in the ¢ and _/directions.

Reference Prandtl number Pr r.

Turbulent Prandtl number Pr,, or, if PRT < 0, a flag indicating the
use of a variable turbulent Prandtl number.

Reference Reynolds number Re,.

Transition Reynolds numbers Rex, r in the ¢ and _/directions.

Static density p, and velocities u, v, and w.

Cartesian coordinates x and y, or cylindrical coordinates x and r.

Flags indicating whether or not the ¢ and _/ boundaries are walls,
if not set in input.

Effective coefficient of viscosity /a, effective second coefficient of
viscosity 2, and effective coefficient of thermal conductivity k.

Turbulent viscosity coefficient/z,.

Subroutine TURBBL manages the computation of the effective coefficient of viscosity, second coeffi-
cient of viscosity, and coefficient of thermal conductivity using the algebraic eddy viscosity model of
Baldwin and l.omax (1978). It is called from MAIN during each step from time level n to n + 1, but after
the governing flow equations have been solved. The Fortran variables RtlO, U, etc., are thus at the n + 1
level. The effective viscosity coefficient to be computed will therefore also be at the n + 1 level. This, of
course, becomes the "known n level for the next time step.

The steps involved in computing the effective coefficients are as follows:

1. Initialize the arrays for storing the turbulent viscosity g, on constant _ and q lines to zero.

238 PROTEUS 2-D Subprograms: TURBBL PROTEUS Programmer's Reference

2. Call VORTEX to compute [_[, the magnitude of the total vorticity vector.

3. At each _ location, compute _, due to walls at rt = 0 and/or rt = 1, or due to a free turbulent flow in the

direction, using steps 3a - 3c. The result will be stored in the Fortran array MUT. If bypassing the
calculation on constant $ lines, skip to step 4 to compute _, on constant r/lines.

3a. If boundary types are specified using the KBC parameters, set flags indicating which q boundaries
are solid walls. (If the KBCs are not used, the IWALL flags have been set in the input.)

3b. Call BLOUT1 to compute (B,)o,,,r, at the current _ location, for rt = 0 to 1.

3c. Call BLIN1 to compute (g,) at the current _ location, within the inner region for a solid wall
at rt = 0 and/or ii = 1.

4. At each q location, compute t_ due to walls at _ = 0 and/or _ = 1, or due to a free turbulent flow in the
rl direction, using steps 4a - 4(:. The result will be stored in the Fortran array DUMMY. If bypassing
the calculation on constant r/lines, skip to step 5.

4a. If boundary types are specified using the KBC parameters, set flags indicating which _ boundaries
are solid walls. (If the KBCs are not used, the IWALL flags have been set in the input.)

4b. Call BI,OUT2 to compute (g,)o_,,,, at the current)1 location, for _ = 0 to I.

4c. Call BLIN2 to compute (v,), at the current rt location, within the inner region for a solid wall
at _=0and/or_= 1.

5. If the input is such that the computation of #, is bypassed in both directions, write an error message

and stop.

6. If/_, is being computed on constant _ lines only, then MUT = u, so skip to step 9.

7. If ta, is being computed on constant rt lines only, then DUMMY = #, so set MUT = DUMMY and

skip to step 9.

8. If gr is being computed both on constant _ lines and constant q lines, compute a single B, value at each
grid point using the averaging formula presented in equation (3.13) of Volume 1.

9. If specified in the input, modify g, to account for laminar-turbulent transition using a model based on
one given by Cebeci and Bradshaw (1984). This model is described in Section 3.4 of Volume I.

10. Define the necessary effective coefficients as follows:

ff = Ptl+/_t

2 ----2 l +)-t

k = k t + k t

where 2, = -2#,/3, and k, is computed using Reynold's analogy as

t_tCp

kt= p_

The turbulent Prandtl number is either a constant specified in the input, or a variable computed using
equation (3.19) of Volume 1.

Remarks

1. In the averaging formula used when V, is computed both on constant _ lines and constant _t lines, the
Fortran variables F I and F2 are

0'_)2
FI=

t,,)2-1112+ 2j

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: TURBBL 239

F2=

If (3',,)_ and (Y_)2are both close to zero, FI and 1:2 are sct equal to l/x/_, which is the limiting value in

the above equations as 0'_)1 and (Y_)2approach zero.

The exponent in the definition of y,, is limited to 20.

h, the l:ortran equation for the effective thermal conductivity, the factor PRR = Pr, is necessary tot

i>iopcr ,londimcnsionalization of k,.

!lie t]ist:t_lc¢ used in the formula for Ytr is a straio_lat-line distance from one point to another. It would

probably be better to compute a curvilinear distance "along the coordinate line.

l'hc scr:ttch array DUMMY, from the common block DUMMY1, is used to store the value of the
turbttlcilt viscosity along constant _1lines. The array is filled in subroutines BLIN2 and BLOUT2.

240 PROTEUS 2-D Subprograms: TURBBL PROTEUS Programmer's Reference

Subroutine UPDATE

Called by Calls Purpose

EXEC Update flow variables after each ADI sweep.

IBASE, ISTEP

IV

JI

NPTS

NR, NRU, NRV, NRW, NET

RtlO, U, V, W, ET

S

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Index in the "vectorized" direction, i_.

Inverse Jacobian of the nonorthogonal grid transformation, j-t.

Number of grid points in the sweep direction, N.

Array indices associated with the dependent variables p, pu, pv,
pw, and E r.

Static density p, velocities u, v, and w, and total energy Er at time
level n.

Computed solution subvector, A0.

RtlOL, UL, VL, WL, ETL Static density p, velocities u, v, and w, and total energy E r at end
of current ADI sweep.

Description

^

Subroutine UPDATE computes the primitive flow variables from the dependent variables AQ after each
ADI sweep, t:or the first sweep the formulas ,are

* ?2 A,

p = p + .IAQ 1

--_-- A,u*= 1 (pnun + jAQ2)
P

* 1 ^*
v = --7 (P nvn + JAQ3)

P

* 1 i,,
w = --= (pnw_ + J_Q4)

p

* A,

E r = E_ + JAQ5

where AQt through AQs are the dependent variables in delta form for the five governing equations. _ For the

second ADI sweep, the superscript * should be changed to n + 1 on p, u, v, w, and Er, and to n on A{}.

34 These formulas are written for the most general case - axisymmetric flow with swirl and non-constant stagnation
enthalpy. For simpler cases there may be only three or four equations.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: UPDATE 241

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

242 PROTEUS 2-D Subprograms: VORTEX PROTEUS Programmer's Reference

Subroutine VORTEX

Called by

TURBBI_

Calls Purpose

Compute magmitude of total vorticity.

l._p.m

ALPI IA 1, AI.PItA2

ETAX, ETAY

N1, N2

U,V,W

XIX, XIY

Y

Spatial difference centering parameters a_ and cx2, for the _ and r/
directions.

Metric coefficients _/x and _y (or r/, if axisynunetric.)

Number of grid points N_ and Ne, in the { and _ directions.

Velocities u, v, and w.

Metric coefficients _ and _y (or _, if a:dsymmetric.)

Radial coordinate r for axisymmetric flow.

omp_t

VORT "Fotal vorticity magnitude.

Description

Subroutine VORTEX computes the magnitude of the total vorticity vector.
planar flow this is defined as

and for axisymmetric flow,

= [Ov Ou
I Ox Oy

For two-dimensional

= --g/+ff + Ox: + Yx

Note that, for flow without swirl, the definition for axisymmetric flow is the same as for two-dimensional
planar flow.

Using the chain rule, these can be rewritten in generalized nonorthogonal coordinates. For two-
dimensional planar flow,

and for axisymmetric flow,

]_] = I(Gv: + 'ix",) - (_y"_+ ,lyu,)I

2
W

112

+ (Gw¢ + nxw,) 2 + (Gv_ + _l,:v,1 - Gu¢ - ,_u,) 2]

At interior points, the variably centered difference formula presented in Section 6.0 of Volume 1 is used
to numerically compute the derivatives in the above equations. At boundary" points, second-order one-sided
difference formulas are used.

PROTEUS 2-D Programmer's Reference PROTEUS Subprograms: VORTEX 243

REFERENCES

Baldwin, B. S., and Lomax, tI. (1978) "Thin layer Approximation and Algebraic Model for Separated
Turbulent Flows," AIAA Paper 78-257.

Beam, R. M., and Wanning, R. F. (1978) "An Implicit Factored Scheme for tile Compressible Navier-
Stokes Equations," AIAA Journal, Vol. 16, No. 4, pp. 393-402.

Brilcy, W. R., and McDonald, H. (1977) "Solution of the Multidimensional Compressible Navier-Slokcs
Equations by a Generalized Implicit Method," Journal of Computational Physics, Vol. 24, pp. 373-397.

Cebeci, T., and Bradshaw, P. (1984) Physical and Computational Aspects of Com, ective lleat 7)ans/i:r,
Springcr-Verlag, New York.

(;hen, S. C., and Schwab, J. R. (1988) "l'hree-Dimensional Elliptic (}rid Generation Technique with Ap-
plication to Turbomachineo' Cascades," NASA TM-101330.

Cray Research, Inc. (1988a) CFT77 Reference Manual, Publication Number SR-0018.

Cray Research, Inc. (1988b) Programmer's Library Reference Manual Publication Number SR-0113.

Cray Rese_ch, Inc. (1988c) UPDATE Reference Manual, Publication Number SR-0013.

Faux, 1. I)., and Pratt, M. J. (1979) Computational Geometry for Design and Manufacture, Ellis l lor_vo_,d
Limited, John Wiley & Sons, Chichester, En_and.

I lesse, W. J., and Mumford, N. V. S. (1964) Jet Propulsion for Aerospace Applications I'itman Publishing
Corporation, New York.

Jameson, A., Schmidt, W., and Turkel, E. (1981) "Numerical Solutions of the Euler Equations by Finite
Volume Methods Using Runge-Kutta Time-Stepping Schemes," AIAA Paper 81-1259.

Kernighan, B. W., and Plauger, P. J. (1978) The Elements of Programming Style, McGraw-llill Book
Company, New York.

Klcinstein, G. (1967) "Generalized Law of the Wall and Eddy-Viscosity Model for Wall Boundar), I.ayers,"
AIAA Journal, Vol. 5, No. 8, pp. 1402-1407.

launder, B. E., and Priddm, C. II. (1973) "% Comparison of Some Proposals for the Mixing I.ength Near
a Wall," International Journal of lleat and Mass Transfer, Vol. 16, pp. 700-702.

Pulliam, T. tl. (1986b) %Mrtificial Dissipation Models for the Euler Equations," AI;M'\ Journal, Vol. 24,
No. 12, pp. 1931-1940.

Roberts, G. O. (1971) "Computational Meshes for Boundary" l,ayer Problems," Proceedings of the Second
International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, Vol. 8,
Springer-Verlag, New York, pp. 171-177.

Shang, J. S. (1984) "Numerical Simulation of Wing-Fuselage Aerodynamic Interaction," AIAA Journal,
Vol. 22, No. 10, pp. 1345-1353.

Spalding, D. B. (1961) "A Single Formula for the Law of the Wall," Journal of Applied Mechanics, Vol.
28, pp. 455-457.

PRECEDING PAGE BLANK NOT ,F_

PROTEUS 2-D Programmer's Reference References 245

Steger,J. L. (1978)"ImplicitFinite-DifferenceSimulationof FlowaboutArbitrary"Two-l)imcnsionalGe-
ometries,"AI/_\ Journal,Vol. 16,No.7,pp.679-686.

White,F. M. (1974)['iscous Fluid I.'low, McGraw-llill Book Company, New York.

._ U.S. GOVERNMENT PRINTING OFFICE: 1 9 9 0 *7 _ s - 1 5 B/o 0 2 21

246 References PROTEUS 2-D Programmer's Reference

,,.,=,_,.=.=_.,_ Report Documentation Page

I. I=_ NO. 2. Government Accession No. 3. Recipient's Catalog No

NASA TM- _2553

4 Title _ Sul_itle

PROTEUS Two-Dimensional Navier-Stokes Computer Code-Version].0

Volume 3-Programmer's Reference

7 Autr_fls)

Charle_E To,he. John R. Schwab. Thomas J. Benson. and Ambady Suresh

5. Repot1 Date

March 1990

6 Performtng Orgamzation Code

r 8. Performing Organ,zahon Report No

E-5308

9 Performing Organizahon Name and Address

Nationai Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135-3191

12. Sponsonng Agency Name and Address

National Aeronautics and Space Administration

Washington. D.C. 20546-0001

10. Work Unit No

505-62-21

11. Contract or Grant NO

13 Type of Reporl and Period Covered

Technical Memorandum

14 Sponsoring Agency Code

15 SuptWementary Notes

Charles E. Towne, John R. Schwab, and Thomas J. Benson, NASA Lewis Research Center. Ambad), Suresh,

Sverdrup Technology, Inc., NASA Lewis Research Center Group, Cleveland, Ohio 44135

16. Abstract

A new computer code has been developed to solve the two--dirnensional or axisymmetric, Reynolds-averaged,

unsteady compressible Navier-Stokes equations in strong conservation law form. The thin-layer or Euler equations

may also be solved. Turbulence is modeled using an algebraic eddy viscosity model. The objective in this effort

has been to develop a code for aerospace applications that is easy to use and easy to modify. Code readability,

modularity, and documentation have been emphasized. The equations are written in nonorthogonal body-firmed

coordinates, and solved by marching in time using a fully-coupled alternating-direction-implicit procedure with

generaJized first- or second-order time differencing. All terms are linearized using second-order Taylor series.

The boundary conditions are treated implicitly, and may be steady, unstead,,, or spatially periodic. Simple

Cartesian or polar grids may be generated internally by the program. More complex geometries require an

externally generated computational coordinate system. The documentation is divided into three volumes. Volume 3

ts the Programmer's Reference. and describes the program structure, the Fortran variables stored in common

blocks, and the details of each subprogram.

17 Key Words (Suggested by Author(s))

Computational fluid dynamics; Navier-Stokes equations:

Euler equations: Viscous flow; Compressible flow;

Unsteady flow: Computer code

18 Distribution Statement

Unclassified - Unlimited

Subject Category 34

N,LSA_ lm OC'ru "For sale by the National Technical Informahon Service. Spnngfield, Virginia 22161

National Aeronautics and

Space Administration

Lewis Research Center

Cleveland, Ohio 44135

Of'l'_/a! Busln_

Penalty for Private UIDe $300

FOURTH CLASS MAIL

ADDRESS CORRECTION REQUESTED

IIIIII

